Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) Ta có
1033 là số chẵn ; 2 là số chắn
=> 1033+2 là số chẵn
=>1033+2 chia hết cho 2
Mặt khác \(10^{33}+2=100....002\) ( 32 số 0 )
Có tổng chữ số là \(1+0.32+2=3⋮3\)
=>1033+2 chia hết cho 3
b) Ta có
10299 là số chẵn ; 8 là số chắn
=> 10299+8 là số chẵn
=> 10299+8 chia hết cho 2
Mặt khác \(10^{299}+8=100....008\) ( 298 số 0 )
Có tổng chữ số là \(1+0.298+8=9⋮9\)
=>10299+8chia hết cho 9
c)
Ta có
Các số tự nhiên có tận cùng là 1 khi nâng lên lũy thừa cũng luôn có tận cùng là 1
\(\Rightarrow81^{45}+4=\left(\overline{......1}\right)+4=\left(\overline{......5}\right)⋮5\)
\(\Rightarrow81^{45}+4⋮5\)
Câu 2
Ta có
\(A=2\left(1+2\right)+2^3\left(1+2\right)+.....+2^{99}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+.....+2^{99}.3\)
=> A chia hết cho 3
Mặt khác A chia hết cho 2 vì mọi số hạng của A đều chia hết cho 2
Mà (2;3)=1
=> \(A⋮2.3=6\)
=> A chia hết cho 6
A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20
b) làm tương tự nhưng nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21
c) A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (đpcm)
A=(4+42)+(43+44)+.......+(423+424)
A=1.(4+42)+42.(4+42)+........+422.(4+42)
A=1.20+42.20+......+422.20
A=20.(1+42+........+422)
=> A chia hết cho 20 ( ĐPCM)
A=(4+42+43)+(44+45+46)+..........+(422+423+424)
A=1.(4+42+43)+43.(1+42+43)+...........+421.(4+42+43)
A=1.84+43.84+...........+421.84
A=84.(1+43+........+421)
Vì 84 chia hết cho 21 => A chia hết cho 21
Mà A chia hết cho 21 và 20 => A chia hết cho 420
A = 21+22+23+24+...+2100
A = (21+22)+(23+24)+...+(299+2100)
A = 2(1+2) + 23(1+2) +....+ 299.(1+2)
A = 2.3 + 23.3 +....+ 299.3
A = 3.(2+23+...+299) chia hết cho 3
=> A chia hết cho 3 (đpcm)
A = 21+22+23+24+...+2100
A = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A = 2(1+2+22+23)+25(1+2+22+23)+...+297(1+2+22+23)
A = 2.15 + 25.15 +....+ 297.15
A = 15.(2+25+...+297) chia hết cho 5 (vì 15 chia hết cho 5)
=> A chia hết cho 5 (Đpcm)
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
A = 22 + 24 + … + 220 chia hết cho 4 và 5.
A = (22 + 24) + (26 + 28) + … (219 + 220)
A = 20 + 24 (22 + 24) + … 216 (22 + 24)
A = 20 + 24 (20) + … 216 (20)
A = 20(1 + 24 + … 216)
A = 5.4.(1 + 24 + … 216)
Vậy A chia hết cho 5 và 4.