K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

Ta có : ( a - b )2  + 4ab

= a2 - 2ab + b+ 4ab

= a+ 2ab + b2

= ( a + b )( Vế trái )

Do đó : ( a + b )= ( a - b )2 + 4ab 

29 tháng 10 2019

+) Biến đổi vế phải ta có :

\(\left(A-B\right)^2+4AB\)

\(=A^2-2AB+B^2+4AB\)

\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)

22 tháng 8 2020

A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 3x(2x + 11) - 5(2x+  11) - 2x(3x + 7) - 3(3x + 7)

A=  6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)

B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2

= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2

= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)

22 tháng 8 2020

A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7) 

=\(6x^2+23x-55-\left(6x^2+23x+21\right)\) 

=\(6x^2+23x-55-6x^2-23x-21\)  

= -76 

Vậy A không phụ thuộc vào x

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

16 tháng 7 2019

Vì \(x=2017\Rightarrow x+1=2018\)

Thay \(x+1=2018\)vào biểu thức A ta được :

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

16 tháng 7 2019

Tại x=2017 thì 2018 = x + 1 

Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

23 tháng 8 2020

a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)

mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)

\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)

Vậy \(ab=\frac{5}{2}\)

b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

mà \(a-b=2\)và \(a+b=4\)

\(\Rightarrow a^2-b^2=2.4=8\)

Vậy \(a^2-b^2=8\)

23 tháng 8 2020

a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)

=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)

<=> \(2ab=5\)

=> \(ab=\frac{5}{2}\)

b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)

lm lộn đề nên hơi chậm xíu^^