K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

17 tháng 8 2016

A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0

B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0

C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0

17 tháng 8 2016

A=(x-3)(x-5)+2

=x2-8x+15+2

=x2-8x+16+1

=(x-4)2+1

vì (x-4)2 lớn hơn hoặc = 0 nên (x-4)2+1 dương 

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

18 tháng 12 2016

Chứng minh bt k phụ thuộc vào biến:

a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)

Vậy giá trị của A k phụ thuộc vào biến

b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)

\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)

Vậy giá trị của bt B k phụ thuộc vào biến

Chứng minh luôn luôn dương:

a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì: \(\left(x-3\right)^2\ge0,\forall x\)

=> \(\left(x-3\right)^2+1>0,\forall x\)

=>đpcm

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)

=>đpcm

18 tháng 12 2016

còn bài này

c, C= (2x+3)(4x2-6x+9)-2(4x3-1)

13 tháng 9 2016

Đặt x2 - 5x= t. (t > 0)

Khi đó biểu thức trên trở thành:

t- 4t + 4 + 2001 = (t - 2)2 + 2001 (1)

Vì ( t- 2)2 >= 0 => (1) luôn dương với moị x

Có sai sót chỗ nào các bạn chỉnh cho mk nha! tkanhs

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

5 tháng 7 2017

\(C=5x-x^2-30=-x^2+5x-\frac{25}{4}+\frac{25}{4}-30=-\left(x-\frac{5}{2}\right)^2-\frac{95}{4}\le-\frac{95}{4}< 0\)

5 tháng 7 2018

\(a.A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\text{∀}x\)

\(b.B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\text{∀}x,y\)

5 tháng 7 2018

a. \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\forall x\)

b. \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\forall x;y\)

3 tháng 8 2018

\(a,C=3x^2+4x+7\)

\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{7}{3}\right)\)

\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}+\dfrac{17}{9}\right)\)

\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)+\dfrac{17}{3}\)

\(=3\left(x+\dfrac{2}{3}\right)^2+\dfrac{17}{3}\)

Vì: \(3\left(x+\dfrac{2}{3}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+\dfrac{2}{3}\right)^2+\dfrac{17}{3}\ge\dfrac{17}{3}>0\forall x\)

Hay: C > 0 với mọi x

\(b,D=2x^2-5x+5\)

\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}+\dfrac{15}{16}\right)\)

\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{15}{8}\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\)

Vì: \(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}>0\forall x\)

Hay: D > 0 với mọi x

=.= hok tốt!!

13 tháng 8 2017

Ta có:

\(A=x^2-6x+10=x^2-2\times3x+3^2+1=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\)với \(\forall x\)(dấu "=" xảy ra \(\Leftrightarrow\)x - 3 = 0 \(\Leftrightarrow\)x = 3)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

Vậy biểu thức A = \(x^2-6x+10\)luôn dương với mọi x.

5 tháng 10 2016

Ta có :

\(B=x^2-10x+28\)

\(\Rightarrow B=x^2-2.x.5+25+3\)

\(\Rightarrow B=\left(x+5\right)^2+3\)

Vì \(\left(x+5\right)\ge0\) ( với mọi x )

\(\Rightarrow\left(x+5\right)+3\ge3\)

=> đpcm

5 tháng 10 2016

đpcm là gì vậy add?