Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)^4-x^2\left(x^2+6\right)+4x\left(x^2+1\right)\)
\(A=x^4-4x^3+6x^2-4x+1-x^4-6x^2+4x^3+4x\)
\(A=\left(x^4-x^4\right)+\left(-4x^3+4x^3\right)+\left(6x^2-6x^2\right)+\left(-4x+4x\right)+1\)
\(A=1\)
Vậy biểu thức không phụ thuộc vào x
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1
= (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1
=> phân thức trên ko phụ thuộc vào biến x
=> ĐPCM
Nếu đúng thì k mk nha
\(A=\left(\frac{3x}{x^2-4}-\frac{1}{x-2}-\frac{2}{x+2}\right):\left(1+\frac{x^2+4}{4-x^2}\right)=\left(\frac{3x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}-\frac{2}{x+2}\right):\left(\frac{4-x^2+x^2+4}{4-x^2}\right)\)
\(=\left(\frac{3x-x-2-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\frac{4}{4-x^2}=\frac{2}{x^2-4}:-\frac{4}{x^2-4}=-\frac{1}{2}\)
\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2-2\right)-7=x^3-1-x^3+2x-7\) (hằng đẳng thức \(x^3-y^3\) )
\(=-1+2x-7=-8+2x\)
Xem lại đề
1) x2-2xy+y2-x+y
(=) (x-y)2-(x-y)
(=) [(x-y)-1].(x-y)
(=) (x-y-1).(x-y)
C= (x-y)(x2+xy+y2)-x(x2-y)+y(y2-x)
(=) x3-y3-x3+xy+y3-xy
(=)(x3-x3)+(-y3+y3)+(xy-xy)
(=) 0
ta có: A= (x-1)^2 +(x+1)(3-x)
<=>A= x^2-2x+1 +3x-x^2-x+3
<=>A=4
Vậy gt của A ko phụ thuộc vào biến