K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

\(2\left(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\right)\)

\(>\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{101}}\)

\(=\dfrac{1}{2}\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)

\(=\dfrac{1}{2}\left(\sqrt{101}-\sqrt{1}\right)>\dfrac{9}{2}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

17 tháng 7 2017

Nhận xét 1: từng hạng tử của A có dạng:

\(\dfrac{1}{\sqrt{x}+\sqrt{x+2}}\left(x\ge3\right)\)

Nhận xét 2:

\(\left(\sqrt{x+2}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{x+2}\right)=\left(x+2\right)-x=2\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+\sqrt[]{x+2}}=-\sqrt{x}+\sqrt{x+2}\)

Áp dụng vào A:

\(2A=\dfrac{2}{\sqrt{3}+\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{7}}+...+\dfrac{2}{\sqrt{97}+\sqrt{99}}\)

\(=\left(-\sqrt{3}+\sqrt{5}\right)+\left(-\sqrt{5}+\sqrt{7}\right)+...+\left(-\sqrt{97}+\sqrt{99}\right)\)

\(=-\sqrt{3}+\sqrt{99}\Leftrightarrow A=-2\sqrt{3}+2\sqrt{99}\)

17 tháng 7 2017

A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

=

\(\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)}+\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)}+\dfrac{\sqrt{9}-\sqrt{7}}{\left(\sqrt{7}+\sqrt{9}\right)\cdot\left(\sqrt{9}-\sqrt{7}\right)}+...+\dfrac{\sqrt{99}-\sqrt{97}}{\left(\sqrt{97}+\sqrt{99}\right)\cdot\left(\sqrt{99}-\sqrt{97}\right)}\)

= \(\dfrac{\sqrt{5}-\sqrt{3}}{5-3}+\dfrac{\sqrt{7}-\sqrt{5}}{7-5}+\dfrac{\sqrt{9}-\sqrt{7}}{9-7}+...+\dfrac{\sqrt{99}-\sqrt{97}}{99-97}\)

=\(\dfrac{\sqrt{5}-\sqrt{3}}{2}+\dfrac{\sqrt{7}-\sqrt{5}}{2}+\dfrac{\sqrt{9}-\sqrt{7}}{2}+...+\dfrac{\sqrt{99}-\sqrt{97}}{2}\)

=\(\dfrac{1}{2}\cdot\left(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}\right)\)

= \(\dfrac{1}{2}\cdot\left(-\sqrt{3}+\sqrt{99}\right)\)

= \(\dfrac{3\sqrt{11}-\sqrt{3}}{2}\)

30 tháng 7 2017

A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

= \(\dfrac{1}{2}\left(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}\right)\)

= \(\dfrac{1}{2}\left(\sqrt{99}-\sqrt{3}\right)\)

B = 35 + 335 + 3335 + ... + 3333...(99 số 3)35

= 33 + 2 + 333 + 2 + 3333 + 2 + ... + 333...33 + 2

= 2 . 99 + (33 + 333 + 3333 + ... + 333...3)

= 198 + \(\dfrac{1}{3}\)(99 + 999 + 9999 + ... + 999...99)

= 198 + \(\dfrac{1}{3}\)(102 - 1 + 103 - 1 + 104 - 1 + ... + 10100 - 1)

= \(\left(\dfrac{10^{101}-10^2}{27}\right)+165\)

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

12 tháng 3 2019

C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)

Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)

\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)

\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).

NV
12 tháng 3 2019

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Xét:

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)

Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)

Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....

\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)

Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)

14 tháng 10 2022

\(VT=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)

\(=4+\sqrt{11}-3\sqrt{7}\)