Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 9 . [ 4/1.3.5+4/3.5.7+4/5.7.9+...+4/25.27.29]
B = 9 . [ 1/3-1/783]
= 9 . [ 1/3-1/783]
= 9 . 260/783=260/87<261/87<3
Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)
\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}\)
\(\Rightarrow B<3\)
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+.............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...........+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+.............+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+.............+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+\dfrac{1}{5.7}-\dfrac{1}{7.9}+...........+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$