Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Lại có: \(a^2+1+b^2+1+c^2+1\ge2\left(a+b+c\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)=12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Dấu = xảy ra khi a=b=c=1
Xét hiệu \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)=\left(a-b\right)^2.\left(a+b\right)^2.a^2b^2.\left(a^4+a^2b^2+b^4\right)\ge0\)
Đẳng thức xảy ra khi a = b
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
đặt a2+b2+c2=S;ab+bc+ca=P
(a+b+c)2=9=a2+b2+c2+2(ab+bc+ca)=S+2P
áp dụng bunhia ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=3\)
\(\Rightarrow S\ge3\)
\(\Leftrightarrow27S\ge81\)
\(\Leftrightarrow81S\ge7S^2+S^2-18S+81+72S-8S^2\)
\(\Leftrightarrow81S^2\ge7S^2+\left(9-S\right)^2+8S\left(9-S\right)\)
\(\Leftrightarrow81S\ge7S^2+4P^2+16SP\)
\(\Leftrightarrow81\left(a^2+b^2+c^2\right)\ge7\left(a^2+b^2+c^2\right)^2+4\left(ab+bc+ca\right)^2+16\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c=1
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
+\(ab< 0\)thì \(VT\ge0>VP\), bđt đúng
+Xét \(ab\ge0\)
\(\left(a^2+b^2\right)^2=\left(a^2+b^2\right)\left(a^2+b^2\right)\ge2ab.\frac{\left(a+b\right)^2}{2}=ab\left(a+b\right)^2\)
(a2+b2)2\(\ge\)ab(a+b)2
<=>a4+b4+2a2b2\(\ge\)a3b+2a2b2+ab3
<=>a4-a3b+b4-ab3\(\ge\)0
<=>a3.(a-b)-b3.(a-b)\(\ge\)0
<=>(a-b)(a3-b3)\(\ge\)0
<=>(a-b)2.(a2+b2+ab)\(\ge\)(luôn đúng với mọi a,b)
=>dpcm