K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

+\(ab< 0\)thì \(VT\ge0>VP\), bđt đúng

+Xét \(ab\ge0\)

\(\left(a^2+b^2\right)^2=\left(a^2+b^2\right)\left(a^2+b^2\right)\ge2ab.\frac{\left(a+b\right)^2}{2}=ab\left(a+b\right)^2\)

17 tháng 8 2016

(a2+b2)2\(\ge\)ab(a+b)2

<=>a4+b4+2a2b2\(\ge\)a3b+2a2b2+ab3

<=>a4-a3b+b4-ab3\(\ge\)0

<=>a3.(a-b)-b3.(a-b)\(\ge\)0

<=>(a-b)(a3-b3)\(\ge\)0

<=>(a-b)2.(a2+b2+ab)\(\ge\)(luôn đúng với mọi a,b)

=>dpcm

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

26 tháng 7 2017

sai đề

4 tháng 6 2018

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2\left(a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)=12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Dấu = xảy ra khi a=b=c=1

23 tháng 11 2016

Xét hiệu \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)=\left(a-b\right)^2.\left(a+b\right)^2.a^2b^2.\left(a^4+a^2b^2+b^4\right)\ge0\)

Đẳng thức xảy ra khi a = b

15 tháng 4 2018

vế phải bằng vế trái

14 tháng 7 2018

ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm

\(\Rightarrow\) sai

đặt a2+b2+c2=S;ab+bc+ca=P

(a+b+c)2=9=a2+b2+c2+2(ab+bc+ca)=S+2P

áp dụng bunhia ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=3\)

\(\Rightarrow S\ge3\)

\(\Leftrightarrow27S\ge81\)

\(\Leftrightarrow81S\ge7S^2+S^2-18S+81+72S-8S^2\)

\(\Leftrightarrow81S^2\ge7S^2+\left(9-S\right)^2+8S\left(9-S\right)\)

\(\Leftrightarrow81S\ge7S^2+4P^2+16SP\)

\(\Leftrightarrow81\left(a^2+b^2+c^2\right)\ge7\left(a^2+b^2+c^2\right)^2+4\left(ab+bc+ca\right)^2+16\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c=1

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha