K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Giả sử 7n+10 và 5n+7 đều chia hết cho d

<=> 5(7n+10) và 7(5n+7) đều chia hết cho d

<=> 35n+50 và 35n+49 đều chia hết cho d

=> (35n+50) - (35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

<=> 1 chia hết cho d

=> d=1

Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản

24 tháng 11 2024

Hướng dẫn giải:

Gọi d là ƯCLN của 5n + 7 và 7n + 10

⇒ (5n + 7)⋮ d và (7n + 10)⋮ d

⇒ [7(5n + 7) - 5(7n + 10)] = -1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hếtcho d

=>1 chia hết cho d

=>d=1

=>PSTG

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

9 tháng 5 2016

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

10 tháng 4 2018

Gọi \(ƯCLN\)\(\left(5n+3;7n+4\right)=d\)

\(\Rightarrow\orbr{\begin{cases}5n+3⋮d\Rightarrow7.\left(5n+3\right)⋮d\Rightarrow35n+21⋮d\\7n+4⋮d\Rightarrow5.\left(7n+4\right)⋮d\Rightarrow35n+20⋮d\end{cases}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{5n+3}{7n+4}\)tối giản

7 tháng 5 2015

Gọi d là ƯCLN(7n+4,5n+3)

=>7n+4 chia hết cho d và 5n+3 chia hết cho d

=>5(7n+4)-7(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d hay d=-1

Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)

Làm ơn cho mình 1 đ ú n g  với,chắc chắn mình đúng......................

10 tháng 2 2018

Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )

Ta cso :

7n + 4 chia hết cho d

5n + 3 chia hết cho d

=> 5 ( 7n + 4 ) chia hết cho d

      7 ( 5n + 3 ) chia hết cho d

=>  35 n + 20 chia hết cho d

      35n + 21 chia hết cho d

=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản

31 tháng 7 2016

Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.

Khi đó 7n+3 chia hết cho d

=> 5(7n+3) chia het cho d hay 35n+15 chc d           (1)

5n+2 chc d

=>7(5n+2) chc d

hay 35n+14 chc d            (2)

Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản

31 tháng 7 2016

Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)

=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d

=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d

=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d

=> (35n + 15) - (35n + 14) chia hết cho d

=> 35n + 15 - 35n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(7n + 3; 5n + 2) = 1

=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)

26 tháng 10 2021

no

hello