Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15n+1}{30n+1}\)
Gọi ƯCLN ( 15n + 1 ; 30n + 1 ) = d
Ta có :
15n + 1 \(⋮\)d ; 30n + 1 \(⋮\)d
=> 2 ( 15n + 1 ) \(⋮\)d
=> 30n + 2 \(⋮\)d
=> ( 30n + 2 ) - ( 30n + 1 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
Vậy \(\frac{15n+1}{30n+1}\)là phân số tối giản
b) \(\frac{n^3+2n}{n^4+3n^2+1}\)
Giải:
Gọi \(ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\) là \(d\)
\(\Rightarrow\left\{\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}n\left(n^3+2n\right)⋮d\\n^4+2n^2⋮d\end{matrix}\right.\)
Do đó:
\(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\) Hay \(n^2+1⋮d\) (1)
\(\Rightarrow\left(n^2+1\right)\left(n^2+1\right)⋮d\) Hay \(n^4+2n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2+1\right)⋮d\) Hay \(n^2⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^2+1\right)-n^2⋮d\) Hay \(1⋮d\)
\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\) hoặc \(-1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đpcm)
Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
=> \(n^2+1⋮d\)
=> \(n\left(n^2+1\right)⋮d\)
=> \(n^3+n⋮d\)
=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)
=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)
=> \(1⋮d\)
=> d = 1
=> \(\left(a;b\right)=1\)
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath