Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
79m+1-79m
=79m.79-79m
=79m(79-1)
=79m.78 chia hết cho 78
=>79m+1-79m chia hết cho 78 (dpcm)
Câu b bài 1 :
B = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
Bài 1:
a, \(77^{n+1}=77^n.77+77^n\)
\(=77^n\left(77+1\right)=77^n.78⋮78\)
\(\Rightarrowđpcm\)
b, \(n^2\left(n-1\right)+\left(n^2-n\right)\)
\(=n^2\left(n-1\right)+n\left(n-1\right)\)
\(=\left(n^2+n\right)\left(n-1\right)=n\left(n+1\right)\left(n-1\right)\)
Vì 3 số liên tiếp chia hết cho 2, 3
Mà ( 2; 3 ) = 1
\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮6\)
\(\Rightarrowđpcm\)
c, tương tự
Bài 2:
a, \(x+y=xy\)
\(\Leftrightarrow x-xy+y=0\)
\(\Leftrightarrow x\left(1-y\right)-1+y=-1\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\1-y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1=-1\\1-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy x = y = 2 hoặc x = y = 0
b, tương tự
Bài 2:
a, \(x+y=xy\)
\(\Rightarrow x+y-xy=0\)
\(\Rightarrow-xy+x+y-1=-1\)
\(\Rightarrow-x.\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(y-1\right).\left(1-x\right)=-1\)
\(\Rightarrow y-1;1-x\inƯ\left(-1\right)\)
\(\Rightarrow y-1;1-x\in\left\{-1;1\right\}\)
Ta có bảng sau:
\(1-x\) | -1 | 1 |
\(y-1\) | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Chọn or loại | Chọn | Chọn |
Vậy.............
b, \(xy-x+2\left(y-1\right)=13\)
\(\Rightarrow x.\left(y-1\right)+2\left(y-1\right)=13\)
\(\Rightarrow\left(y-1\right)\left(x+2\right)=13\)
\(\Rightarrow y-1;x+2\inƯ\left(13\right)\)
\(\Rightarrow y-1;x+2\in\left\{-13;-1;1;13\right\}\)
Ta có bảng sau:
\(x+2\) | -13 | -1 | 1 | 13 |
\(y-1\) | -1 | -13 | 13 | 1 |
x | -15 | -3 | -1 | 11 |
y | 0 | -12 | 14 | 2 |
Chọn or loại | Chọn | Chọn | Chọn | Chọn |
Vậy.............
Chúc bạn học tốt!!!
B1:
a) \(77^{n+1}+77^n=77^n.77+77^n=77^n.78\) \(⋮\) \(78\)
b) \(n^2\left(n-1\right)+\left(n^2-n\right)\)
= \(n^2\left(n-1\right)+n\left(n-1\right)\)
= \(\left(n-1\right).n\left(n+1\right)\)
Dấu hiệu chia hết cho 6 là tích của 3 số liên tiếp sẽ chia hết cho 6. Ta thấy KQ có tích \(\left(n-1\right).n\left(n+1\right)\) là 3 số liên tiếp nên \(\left(n-1\right).n\left(n+1\right)\) \(⋮\) 6
c) \(\left(2n+1\right)^3-\left(2n+1\right)\)
= \(\left(2n+1\right)\left[\left(2n+1\right)^2-1\right]\)
= \(\left(2n+1\right)\left(2n+1-1\right)\left(2n+1+1\right)\)
= \(\left(2n+1\right)^2.2n.\left(2n+2\right)\)
= \(\left(2n+1\right)^2.4n.\left(n+1\right)\)
Ta thấy tích trên có một số hạng là 4n \(⋮\) 2 và 4
Dấu hiệu chia hết cho 8 là chia hết cho 2 và 4
Nên \(\left(2n+1\right)^2.4n.\left(n+1\right)\) \(⋮\) 8
Hay \(\left(2n+1\right)^3-\left(2n+1\right)\) \(⋮\) 8
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Ta có a+b+c=0 sẽ chia hết cho 30
Và 30=2*3*5
Lại có \(a^2\equiv a\) (mod2) =>\(a^4\equiv a^2\equiv a\) (mod 2)
\(\Rightarrow a^5\equiv a^2\equiv a\) (mod 2)
\(b^3\equiv b\) (mod 3) \(\Rightarrow b^5\equiv b^3=b\) (mod 3)
\(c^5\equiv c\) (mod 5)
Suy ra : \(a^5+b^5+c^5\equiv a+b+c\) (mod 2.3.5)
Vậy \(a^5+b^5+c^5\) sẽ chia hết cho 30
mơn bạn rất rất nhiều mặc dù mk chẳng hiểu cái qué j^^! Dù sao mk cx cm ơn nha!
B1: Giải:
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)
\(79^{m+1}-79^m=79^m\left(79-1\right)=79^m.78.\) chia hết cho 78
Vậy \(79^{m+1}-79^m\) chia hết cho 78 (m thuộc N)
\(79^{m+1}-79^m=79.79^m-79^m\)
\(=79^m.\left(79-1\right)\)
\(=78.79^m\)chia hết cho 78.
Chúc em học tốt^^