K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Ta có:

n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2) 

= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.

1 tháng 9 2017

mk ko hieu de lam bn

4 tháng 8 2016

Với n=1, bt phải chứng minh chia hết cho 13. Giả sử n=k, 42k+1+3k+2 chia hết cho 13.

Xét n=k+1, 42(k+1)+1+3k+1+2=42k+1.16+3k+2.3=3(42k+1+3k+2)+42k+1.13 chia hết cho3

5 tháng 1 2016

+) Với n = 1 thì 43 + 33 = 64 + 27 = 91 chia hết cho 13

+) Giả sử biểu thức trên đúng với n = k (k lớn hơn hoặc bằng 1) => 42k + 1 + 3k + 2 chia hết cho 13 thì ta cần chứng minh biểu thức trên đúng với k + 1 tức 42k + 2 + 3k + 3

Thật vậy:

42k + 3 + 3k + 3

= 42k + 1.42 + 3.3k + 2

= 42k + 1.3 + 42k + 1.13 + 3.3k + 2

= 3.(42k + 1 + 3k + 2) + 42k + 1.13

Vì 3.(42k + 1 + 3k + 2) chia hết cho 13 và 42k + 1.13 chia hết cho 13

=> 3.(42k + 1 + 3k + 2) + 42k + 1.13 chia hết cho 13

=> Phép quy nạp được chứng minh

Vậy 42n + 1 + 3n + 2 chia hết cho 13

 

5 tháng 1 2016

Sr nhé, bn thay chỗ Với n = 1 thành với n = 0 nhé rồi sau đó làm tiếp như vậy

4 tháng 10 2019

Câu hỏi của le hoang minh khoi - Toán lớp 9 - Học toán với OnlineMath