K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Giả sử số thứ nhất chia 5 dư 1 thì số thứ năm chia năm dư 5 

Hay số thứ năm chia hết cho 5

Tiếp tục giả sử với các trường hợp số thứ hai, ba,... chia năm dư 1

Ta cũng thu được trong 5 số ấy luôn có 1 số chia hết cho 5 

Do đó tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5

Vậy tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5 

7 tháng 7 2019

Gọi 5 số tự nhiên liên tiếp lần lượt là : 5k ; 5k + 1 ; 5k + 2 ; 5k + 3 ; 5k + 4

Ta có : 5k(5k + 1)(5k + 2)(5k + 3)(5k + 4)

 Ta có : Vì 5k\(⋮\)5

=>  5k(5k + 1)(5k + 2)(5k + 3)(5k + 4) \(⋮\)5

Vậy tích 5 số tự nhiên liên tiếp chia hết cho 5 

24 tháng 12 2018

\(3n-4⋮n-1\)

\(3n-3-1⋮n-1\)

\(3\left(n-1\right)-1⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow1⋮n-1\)

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{2;0\right\}\)

24 tháng 12 2018

thank ạ

19 tháng 7 2017

b/n bang 2      c/n bang 2

13 tháng 2 2019

\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))

Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)

Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)

Chúc bạn học tốt!

13 tháng 2 2019

ta có 

A=9(7x+4y) - 2(13x+18y)

A=63x+36y-26x-36y

A=x(63-26)-(36y-36y)

A=37x

=>A chia hết cho 37

mà 7x+4y chia hết cho 37=>9(7x+4y)  chia hết cho 37

9(7x+4y)  chia hết cho 37=>2(13x+18y)

mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37

vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37

7 tháng 7 2015

7^10+ 7^9- 7^8=78.72+78.7+78.1=78.(72+7-1)=78.55

=>7^10+ 7^9- 7^8 chia hết cho 55