Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C c b a I
Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)
\(\Rightarrow I\in AA'\) và
\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)
Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC
=> Điều đó đúng với giả thiết.
Vậy ta có đpcm
Câu a
Thừa nhận định lý: trên đường thẳng BC với điểm M thuộc BC và điểm A bất kỳ thì \(\dfrac{MC}{BC}\).\(\overrightarrow{AB}\) + \(\dfrac{BM}{BC}\).\(\overrightarrow{AC} = \overrightarrow{AM}\)(tạm thời thì mình đang gấp, chưa chúng minh được) cái này là định lý ngoài nha, đừng vẽ lên hình
Gọi điểm A' là giao điểm của AI và BC
áp dụng định lý trên: \(\overrightarrow{IA'} = \dfrac{A'C}{BC}.\overrightarrow{IB} + \dfrac{A'B}{BC}.\overrightarrow{IC}\) (*)
sử dụng dịnh lý đường phân giác \(\dfrac{A'C}{AC}=\dfrac{A'B}{AB}\) và tỉ lệ này bằng với \(\dfrac{BC}{AC+AB}=\dfrac{BC}{b+c}\) (định lý về phân số \(\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a+c}{b+d}\) )
suy ra \(\dfrac{A'C}{BC}=\dfrac{AC}{b+c}=\dfrac{b}{b+c}\) (1)
và \(\dfrac{A'B}{BC}=\dfrac{AB}{b+c}=\dfrac{c}{b+c}\) (2)
Thay (1), (2) vào (*)
ta có \(\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\) (3)
Mặt khác ta lại có \(\dfrac{\overrightarrow{IA'}}{\overrightarrow{IA}}\)=\(-\dfrac{IA'}{IA}\) (do 2 vecto đối nhau)
suy ra \(\overrightarrow{IA'}\)=\(-\dfrac{IA'}{IA}\).\(\overrightarrow{IA}\)=\(-\dfrac{A'C}{AC}\).\(\overrightarrow{IA}\)=\(-\dfrac{a}{b+c}\).\(\overrightarrow{IA}\) (sử dụng tiếp tục định lý đường phân giác nha bạn \(\dfrac{IA'}{IA}=\dfrac{A'C}{AC}\) ) (4)
Từ (3) và (4) ta suy ra \(-\dfrac{a}{b+c}\overrightarrow{IA'} = \dfrac{b}{b+c}.\overrightarrow{IB} + \dfrac{c}{b+c}.\overrightarrow{IC}\)
loại \(b+c\) trong cả 2 vế ta còn lại
\(-a.\overrightarrow{IA'} = b.\overrightarrow{IB} + c.\overrightarrow{IC}\) \(\leftrightarrow\)\(a.\overrightarrow{IA'} + b.\overrightarrow{IB} + c.\overrightarrow{IC}= \overrightarrow{0}\)
giả sử : \(a< b< c\)
\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=a\overrightarrow{IA}+a\overrightarrow{IB}+x\overrightarrow{IB}+c\overrightarrow{IC}\) với \(a+x=b\)
\(=a\overrightarrow{CI}+x\overrightarrow{IB}+c\overrightarrow{IC}\)
để dàng thấy \(\overrightarrow{CI}\) và \(\overrightarrow{IB}\) tạo nhau 1 góc \(\alpha\ne0\)
\(\Rightarrow a\overrightarrow{CI}+x\overrightarrow{IB}=\overrightarrow{a}\) không cùng phương với \(\overrightarrow{IC}\)
\(\Rightarrow a\overrightarrow{CI}+x\overrightarrow{IB}+c\overrightarrow{IC}\ne\overrightarrow{0}\)
\(\Rightarrow\) đề sai