Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
a) A = 1 + 2 + 22 + 23 + ... + 22012
2A = 2 + 22 + 23 + 24 + ... + 22013
2A - A = (2 + 22 + 23 + 24 + ... + 22013) - (1 + 2 + 22 + 23 + ... + 22012)
A = 22013 - 1
b) A = 22013 - 1
A = 22012.2 - 1
A = (24)503.2 - 1
A = (...6)503.2 - 1
A = (...6).2 - 1
A = (...2) - 1
A = (...1)
c) A = 1 + 2 + 22 + 23 + ... + 22012 (có 2013 số; 2013 chia hết cho 3)
A = (1 + 2 + 22) + (23 + 24 + 25) + ... + (22010 + 22011 + 22012)
A = 7 + 23.(1 + 2 + 22) + ... + 22010.(1 + 2 + 22)
A = 7 + 23.7 + ... + 22010.7
\(A=7.\left(1+2^3+...+7^{2010}\right)⋮7\left(đpcm\right)\)
Cách 1 :
- Chứng minh rằng A \(⋮\) 5 bằng cách nhóm A thành từng nhóm bốn số . Ta lại có A \(⋮\) 2 nên A \(⋮\) 10 .
\(\Rightarrow\) A tận cùng bằng 0
Cách 2 :
Hãy chứng minh rằng A = 221 - 2 .
A = 221 - 2 = ( 24 )5 . 2 - 2 = 165 . 2 - 2 = ...16 . 2 - 2 , tận cùng bằng 0
3\(^1\) | 3\(^2\) | 3\(^3\) | 3\(^4\) | ||||||
chữ số tận cùng | 3 | 9 | 7 | 1 | |||||
3^1 dư 1 , 3^2 dư 2 , 3^3 dư 3 , 3^4 dư 0
103:3=34 dư 1
vậy chữ số tận cùng của 3^103 là 3
\(\left(x+3\right)^2+\left(0,5y-1\right)^2=0\)
Do \(\left(x+3\right)^2\ge0;\left(0,5y-1\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+\left(0,5y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)^2=0\\\left(0,5y-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+3=0\\0,5y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
...
Vì \(\hept{\begin{cases}\left(x+3\right)^2\ge0\forall x\\\left(0.5y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+3\right)^2+\left(0.5y-1\right)^2\ge0\forall x,y\)
Mà \(\left(x+3\right)^2+\left(0.5y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\0.5y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy ...
a) \(2A=2+2^2+...+2^{2018}\)
\(A=1+2+2^2+..+2^{2017}\)
=> \(A=2^{2018}-1< 2^{2018}\)
=> A < B
b) \(3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
=> \(2B=3B-B=1-\frac{1}{3^{99}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{99}\cdot2}< \frac{1}{2}\)( đpcm )
2B=1+1/2+(1/2)^2+.....+(1/2)^2016
B=2B-B=[1+1/2+(1/2)^2+....+(1/2)^2016]-[1/2+(1/2)^2+....+(1/2)^2017]
= 1-(1/2)^2017
k mk nha