Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => \(\widehat{CDA} = 90^o\)
Tương tự ta có \(\widehat{CEB}=90^o \)
Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
b) △AEH và △ADC , có
\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g)
=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)
Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn )
△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2)
Từ (1) và (2) => \(AF^2= AH.AD\)