K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Ta có: \(x.S - S = x\left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right) - \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right)\)

\(\begin{array}{l} = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6} - 1 - x - {x^2} - {x^3} - {x^4} - {x^5}\\ = {x^6} - 1 \text{(đpcm)} \end{array}\)

Ta có: \(S=1+x+x^2+x^3+x^4+x^5\)

\(x\cdot S=x\left(1+x+x^2+x^3+x^4+x^5\right)=x+x^2+x^3+x^4+x^5+x^6\)

Do đó: \(x\cdot S-S=\left(x+x^2+x^3+x^4+x^5+x^6\right)-\left(1+x+x^2+x^3+x^4+x^5\right)\)

\(=x+x^2+x^3+x^4+x^5+x^6-1-x-x^2-x^3-x^4-x^5\)

\(=x^6-1\)(đpcm)

15 tháng 7 2017

1/ \(A=3\left(x+1\right)^2-\left(x+3\right)^2\)

\(=3\left(x^2+2x+1\right)-\left(x^2+6x+9\right)\)

\(=3x^2+6x+3-x^2-6x-9\)

\(=2x^2-6\)

Vậy biểu thức A vẫn phụ thuộc vào biến -_-

2/ \(B=\left(x-2\right)^2-\left(x-4\right)x\)

\(=x^2-4x+4-x^2-4x\)

\(=4\)

Vậy biểu thức B không phụ thuộc vào biến (đpcm)

3/ \(C=3\left(x+2\right)^2-3\left(x^2-4x\right)\)

\(=3\left(x^2+4x+4\right)-3x^2+12x\)

\(=3x^2+12x+12-3x^2+12x\)

\(=24x+12\)

Vậy biểu thức C vẫn phụ thuộc vào biến -_-

4/ \(D=3x\left(x-2\right)\left(x+2\right)-x\left(3x+3\right)\)

\(=3x\left(x^2-4\right)-3x^2-3x\)

\(=3x^3-12x-3x^2-3x\)

\(=3x^3-3x^2-15x\)

Vậy biểu thức D vẫn phụ thuộc vào biến -_-

5/ \(E=x^2-\left(x+1\right)\left(x-1\right)+5\)

\(=x^2-\left(x^2-1\right)+5\)

\(=x^2-x^2+1+5\)

\(=6\)

Vậy biểu thức E không phụ thuộc vào biến.

29 tháng 8 2017

2.

a) \(x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)

\(\Rightarrow x^3+x^2+x-x^3-x^2-x+5\)

\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)

\(=5\)( vì kết quả bằng 5 nên đa thức không phụ thuộc vào biến )

b) \(x.\left(2x+1\right)-x^2.\left(x+2\right)+x^3-x+3\)

\(\Rightarrow2x^2+x-x^3-2x^2+x^3-x+3\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)

\(=3\)( vì kết quả bằng 3 nên đa thức không phụ thuộc vào biến )

c) \(4.\left(6+x\right)+x^2.\left(2+3x\right)-x.\left(5x+4\right)+3x^2.\left(1-x\right)\)

\(\Rightarrow24+4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)

\(\Rightarrow24+\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)

\(=24\)( vì kết quả bằng 24 nên đa thức không phụ thuộc vào biến )

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

27 tháng 7 2019

\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)

\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)

27 tháng 7 2019

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)

31 tháng 8 2020

x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )