K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}\) 

\(2015\) là số nguyên

=> đpcm

29 tháng 9 2018

Đặt: n=2014

Ta có: \(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}\)

\(=\frac{\left(n+1\right)^2+n^2\left(n^2+2n+2\right)}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2+2n^2\left(n+1\right)+n^4}{\left(n+1\right)^2}\)

\(=\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}=\left(\frac{n\left(n+1\right)+1}{n+1}\right)^2=\left(n+\frac{1}{n+1}\right)^2\)

\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=n+\frac{1}{n+1}\)

\(\Rightarrow B=2014+\frac{1}{2015}+\frac{2014}{2015}=2015\)

16 tháng 1 2016

\(\sqrt{2014^2\left(\frac{1}{2014^2}+1+\frac{1}{2015^2}\right)}-\frac{2014}{2015}=2014\sqrt{\left(1+\frac{1}{2014}+\frac{1}{2015}\right)^2}-\frac{2014}{2015}\)

\(=2014\left(1+\frac{1}{2014}+\frac{1}{2015}\right)-\frac{2014}{2015}=2015\)

16 tháng 1 2016

\(B=\sqrt{2014^2\left(1+\frac{1}{2014}-\frac{1}{2015}\right)^2}+\frac{2014}{2015}=2015\)

2 tháng 11 2017

a,a=b+1

suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1

suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)

vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)

suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)

từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)

ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)

suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)

vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)

suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)

Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)

từ (*),(**) suy ra đccm

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

14 tháng 7 2015

2015=2014+1 => 2015^2=2014^2 +2.2014+1

=>2014^2 + 1=2015^2 -2.2014=2015^2 -2. 2014/2015.2015

thế vào =>b= 2015-2014/2015+2014/2015=2015

NV
21 tháng 9 2019

\(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+2n^2+2n+1}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}}=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}}=\frac{n\left(n+1\right)+1}{n+1}=n+\frac{1}{n+1}\)

Thay \(n=2014\Rightarrow B=2014+\frac{1}{2015}+\frac{2014}{2015}=2015\)

Câu 2:

\(2\left(x^2+2x+1\right)+3y^2=21\)

\(\Leftrightarrow2\left(x+1\right)^2+3y^2=21\)

Do \(2\left(x+1\right)^2\ge0\Rightarrow3y^2\le21\Rightarrow y^2\le7\)

\(2\left(x+1\right)^2\) chẵn \(\Rightarrow3y^2\) lẻ \(\Rightarrow y^2\) lẻ

\(\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow2\left(x+1\right)^2+1=21\Rightarrow\left(x+1\right)^2=10\Rightarrow\) không tồn tại x thỏa mãn

Vậy pt trên ko có nghiệm nguyên

b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\) 

=> đpcm