Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện: \(x\ne\pm1\)
\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)
\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)
\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)
\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)
b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Khi \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)
Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)
c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)
a: ĐKXĐ: x<>1; x<>-1
b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Để P=1/2 thì 1/2(x+1)=1/2
=>x+1=1
=>x=0
a: \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x\left(x+1\right)-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{x^2+x-x+1}{x-1}\)
\(=\dfrac{1-x}{x-1}=-1\)
b: \(\dfrac{x}{6-x}+\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x^2+6x}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{x^2-x^2+12x-36}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{12\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}\)
\(=\dfrac{x}{6-x}+\dfrac{6}{x-6}=\dfrac{-x+6}{x-6}=-1\)
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
a) Giá trị của biểu thức A đã co xác định
\(\Leftrightarrow\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)thì giá trị của biểu thức A đã cho được xác định .
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b)
+) \(A=\left(\frac{1}{x^2+x}+\frac{1}{x+1}\right).x^2\)
\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)
\(A=\frac{1+x}{x\left(x+1\right)}.x^2\)
\(A=\frac{1}{x}.x^2=x\)
+)
Ta có :
\(A\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
<=> x = 0 ( không thỏa mãn ĐKXĐ) hoặc x = 1( thỏa mãn ĐKXĐ) hoặc x = -1 ( Không thỏa mãn ĐKXĐ)
Vậy với x = 1 thì \(A\left(x^2-1\right)=0\)
\(a.ĐKXĐ:\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0vax\ne-1\\x\ne-1\end{cases}\Leftrightarrow}x\ne0vax\ne-1}\)
\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)
\(=\frac{1+1x}{x\left(x+1\right)}.x^2\)
\(=\frac{1+1x}{x^2+x}.x^2\)
\(=\frac{1+1x}{x}\) với \(x\ne0\)và \(x\ne-1\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Thay x=-2 vào A, ta được:
\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)