K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 8 2021

\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự và cộng lại:

\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)

Cần các cao nhân giải khác phương pháp SS

Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)

Ai làm được xin cảm ơn trước

22 tháng 7 2019

#)Giải :

Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Áp dụng BĐT Cauchy :

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)

Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)

\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)

\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)

Dấu ''='' xảy ra khi a = b = c = 1

29 tháng 5 2018

MÌnh nghĩ đề phải là tìm GTLN chứ

Ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=2\)

\(\Rightarrow\frac{1}{a+b+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\)

Tương tự: \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}}\)

                 \(\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)

Nhân lại ta có: \(\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)

Dấu = khi a=b=c=1/4

12 tháng 11 2018

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

5 tháng 9 2021

P-S=0 ?? =))