Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a^2/c=x;b^2/a=y;c^2/b=z
a^2/c*b^2/a*c^2/y=x.y.z=1
c/a^2=; a/b^2=; a/c^2=
Ta có: x+y+z=1/x+1/y+1/z
x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)
Lại có: (x-1)(y-1)(z-1)
=xyz-xy-yz-zx+x+y+z-1
=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
x-1, y-1 ,z-1 ít nhất 1 số bằng 0
Nếu x-1=0 x=1 a^2/c=1
a^2=c
Vậy....
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
1/ Giả sử có hữu hạn số nguyên tố là a1,a2,a3,...,an trong đó an là số nguyên tố lớn nhất trong tất cả các số nguyên tố.
Xét số A= a1.a2.a3....an chia hết cho mỗi số nguyên tố ap (với 1<=p<=n)
=> số A+1 chia cho mỗi số ap đều dư 1.(1)
Lại có A+1 > an => A+1 là hợp số =>A+1 chia hết cho 1 trong các số nguyên tố ap,mâu thuẫn với (1).
=> điều giả sử là sai=> có vô số số nguyên tố
2/ ko biết vì học lớp 6
3/
Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số a/b (a và b là các số nguyên).Tập hợp số vô tỉ kí hiệu là \(\mathbb I\)
Ví dụ:
- Số thập phân vô hạn có chu kỳ thay đổi: 0,1010010001000010000010000001...
- Số = 1,41421 35623 73095 04880 16887 24209 7...
- Số pi = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679...
- Số lôgarít tự nhiên e = 2,71828 18284 59045 23536...
vì không có hữu hạn số tự nhiên nên ko có hữu hạn số nguyên tố
Có a2+b2+c2>=ab+bc+ca(bđt)
tương đương 1>=ab+bc+ca
Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0
tương đương 2(ab+bc+ca)>= -1
tương đương ab+bc+ca>=\(\frac{-1}{2}\)
Có a2+b2+c2>=ab+bc+ca(bđt)
tương đương 1>=ab+bc+ca
Có (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=1+2(ab+ca+bc)>=0
tương đương 2(ab+bc+ca)>= -1
tương đương ab+bc+ca>=
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
\(b+c=a\Rightarrow b+c-a=0\Leftrightarrow2b+2c-2a=0\)
Ta có:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2-\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}}\)
\(=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2+\frac{2c+2b-2a}{abc}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2}=\left|\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right|\)là số hữu tỉ (đpcm)
1)
<=>2x^2-x-6x+3=o
<=>x(2x-1)-3(2x,-1)=0
(2x-1)(x-3)=0
x={1/2;3}