K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)

\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)

\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)

=> \(A< \frac{1}{9}\left(đpcm\right)\)

28 tháng 4 2019

Ta có:

\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)

\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)

...

\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)\(\frac{80}{81}\)

Từ trên, ta có:

A= \(\frac{1}{2}\)\(\frac{3}{4}\)\(\frac{5}{6}\)...\(\frac{79}{80}\)\(\frac{2}{3}\)\(\frac{4}{5}\)\(\frac{6}{7}\)...\(\frac{80}{81}\)

A<  \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\)\(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)

A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)

A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)

A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)

 <  \(\frac{1}{9}\)  (đpcm)

Vậy A< \(\frac{1}{9}\)

6 tháng 2 2020

*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)

         62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)

   ....

         1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng từng vế có :

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}\)

Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)

=> \(A>\frac{96}{505}\)

Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)

=> \(A>\frac{1}{6}\)(1)

*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)

.......

    1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)

Cộng từng vế có :

........ => A < \(\frac{96}{400}\)

Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)

=> A < \(\frac{1}{4}\)(2)

Từ (1)(2) => đpcm

\(\text{Ta thấy :}\)

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(......................................\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{6}\left(1\right)\)

\(\text{Lại thấy :}\)

\(\frac{1}{5^2}< \frac{1}{5.4}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(..................................\)

\(\frac{1}{100^2}< \frac{1}{100.99}\)

\(\text{Tương tự như trên ta tính được }:\)

\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)

8 tháng 3 2017

có bị sai đề không đấy bạn

8 tháng 3 2017

CMR A> 1/9 thì mới làm được chứ