Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = (2+22+23+24)+(25+26+27+28)+....+(217+218+219+220)
= 2.(1+2+22+23)+2^5.(1+2+22+23)+.....+217.(1+2+22+23)
= 2.15 + 25.15 +.... +217.15
= 15.(2+25+....+217) \(⋮\)15
M = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...\)\(+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
= \(30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)
=\(30+2^4.30+...+2^{16}.30\)
=\(30\left(1+2^4+...+2^{16}\right)\)\(⋮15\)
Vậy....
ta có: A = 3 + 3^2 + ...+ 3^20 ( có 20 số hạng)
A = (3+3^2) + ...+ (3^19+3^20)
A = 3.(1+3) + ...+ 3^19.(1+3)
A = 3.4 + ...+ 3^19.4
A = 4.(3+...+3^19) chia hết cho 4
phần còn lại làm tương tự nha
a) S=1-3+3^2-3^3+...+3^98-3^99
S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)
S=-20+3^4(-20)+...+3^96(-20)
S=-20(1+3^4+...+3^96)
=>S chia hết cho -20
b) S=1-3+3^2-3^3+...+3^98-3^99
3S=3(1-3+3^2-3^3+...+3^98-3^99)
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)
4S=1-3^100
S=(1-3^100)/4
=>1-3^100 chia hết cho 4 (vì z là số nguyên)
=>3^100-1 chia hết cho 4
=>3^100 chia 4 dư 1
Ta có:A = 4 + 42 + 43 +......+ 423+ 424
\(\Rightarrow\)A = (4 + 42)) + (43 +44)......+ (423+ 424)
\(\Rightarrow\)A = (4 + 42).1+(4 + 42).42+...+(4 + 42).422
\(\Rightarrow\)A = 20.(1+42+...+422) \(⋮\) 20
Ta lại có: A = 4 + 42 + 43 +......+ 423+ 424
\(\Rightarrow\)A = (4 + 42 + 43)+...+(422+423+424)
\(\Rightarrow\)A = (4 + 42 + 43).1+...+(4 + 42 + 43).421
\(\Rightarrow\)A = 21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21 = 420
Vậy \(\hept{\begin{cases}A⋮20\\A⋮21\\A⋮420\end{cases}}\)
Chứng minh chia hết cho 20:A=(4+42)+(43+44)+...+(423+424)
=20 + 42.20 +...+422.20 chia hết cho 20 vì mỗi số hạng đều chia hết cho 20
Chứng minh chia hết cho 21:A=(4+42+43)+...+(422+423+424)
= 4.21 +...+422.21 chia hết cho 21 vì mỗi số hạng đều chia hết cho 21
Chứng minh chia hết cho 420:A=(4+42+43+44+45+46)+...+(419+420+421+422+423+424)
= 420.13+...+420.418chia hết cho 420 vì mỗi số hạng đều chia hết cho 420