Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{2x+3}{x-2}\Rightarrow y'=\frac{-7}{\left(x-2\right)^2}\)
Tiếp tuyến song song với d nên có hệ số góc \(k=-\frac{1}{7}\)
\(\Rightarrow\frac{-7}{\left(x_0-2\right)^2}=-\frac{1}{7}\Rightarrow\left(x_0-2\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}x_0=9\Rightarrow y_0=3\\x_0=-5\Rightarrow y_0=1\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-\frac{1}{7}\left(x-9\right)+3\\y=-\frac{1}{7}\left(x+5\right)+1\end{matrix}\right.\)
d: có hệ số góc k = 1/2 ⇒ Tiếp tuyến có hệ số góc k = 1/2.
- Gọi ( x 0 , y 0 ) là toạ độ của tiếp điểm.
- Ta có:
\(y'=x^2-4x+3\)
a/ Tiếp tuyến vuông góc với \(y=x+2\Rightarrow\) tiếp tuyến có hệ số góc k=-1
\(\Rightarrow x_0^2-4x_0+3=-1\)
\(\Leftrightarrow x_0^2-4x_0+4=0\Rightarrow x_0=2\)
\(\Rightarrow y\left(0\right)=\frac{5}{3}\)
Pt tiếp tuyến: \(y=-1\left(x-2\right)+\frac{5}{3}\Leftrightarrow y=-x+\frac{11}{3}\)
b/ Tiếp tuyến song song \(y=3x+2020\Rightarrow\) có hệ số góc \(k=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=1\\x_0=4\Rightarrow y_0=\frac{7}{3}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=3x+1\\y=3\left(x-4\right)+\frac{7}{3}\end{matrix}\right.\)
Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)
Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)
\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)
Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)
y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2
(d1)//(d)
=>(d1): y=1/2x+b
=>y'=1/2
=>(x+1)^2=4
=>x=1 hoặc x=-3
Khi x=1 thì f(1)=0
y-f(1)=f'(1)(x-1)
=>y-0=1/2(x-1)=1/2x-1/2
Khi x=-3 thì f(-3)=(-4)/(-2)=2
y-f(-3)=f'(-3)(x+3)
=>y-2=1/2(x+3)
=>y=1/2x+3/2+2=1/2x+7/2
Câu 2:
\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)
a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)
Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)
b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)
\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)
Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)
c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)
Pttt: \(y=-3x-1\)
d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)
Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3
\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)
Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:
1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)
Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn
3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)
b/ \(y'=4x^3-4x\)
c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)
d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)
e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)
Vì phương trình tiếp tuyến song song với đường thẳngy =-3x + 1nên nó có hệ số góc là -3
Do đó f ' x = 3 x 2 − 10 x = − 3 ⇔ 3 x 2 − 10 x + 3 = 0
⇔ x = 1 3 x = 3
Với x = 1 3 thì y 0 = 40 27 Vậy phương trình tiếp tuyến là: y = − 3 x − 1 3 + 40 27 = − 3 x + 67 27
Với x=3thì y 0 = - 16 Vậy phương trình tiếp tuyến là: y = -3(x- 3) – 16 = - 3x – 7
Chọn đáp án C
\(y'=\frac{-5}{\left(x-3\right)^2}\)
Do tiếp tuyến song song với \(y=-5x+3\) nên có hệ số góc -5
\(\Rightarrow\frac{-5}{\left(x-3\right)^2}=-5\Rightarrow\left(x-3\right)^2=1\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=7\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Có hai tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=-5\left(x-4\right)+7\\y=-5\left(x-2\right)-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-5x+27\\y=-5x+7\end{matrix}\right.\)