K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

bạn xem lại đề bài xem bạn viết có đúng ko

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)

\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)

Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)

Tìm min $S=a+b+c$

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)

Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
29 tháng 2 2020

Lời giải:

Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)

\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)

Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)

Tìm min $S=a+b+c$

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)

Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

21 tháng 8 2018

A = \(\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)\(\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)

\(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)\(\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)\(\frac{2.6}{3.7}=\frac{4}{7}\)

c, theo đề bài ta có : 

x2 = yz, y2 = xz , z2 = xy

\(\Rightarrow\frac{x}{y}=\frac{z}{x},\frac{y}{x}=\frac{z}{y},\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

AD t/c DTSBN, ta có 

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{X+z+y}{y+x+z}=1\)

x= 1y

z= 1x

y= 1z

=> x = y = x

14 tháng 7 2015

Ta có 

\(5^n\) 2 chữ số tận cùng là 25 

=> \(5^n-1\) hai chứ số tận cùng là 24

24 chia hết cho 4 

=> \(5^n-1\) chia hết cho 4 

a,5 đồng dư với 1(mod 4)

=>5n đồng dư với 1n=1(mod 4)

=>5n=4k+1

=>5n-1=4k+1-1=4k chia hết cho 4

=>đpcm

b,xét x=0=>100+48=49=72(chọn)

xét x>0=>10x+48=y2 có tận cùng =8(loại)

vậy (x;y)=(0;7)

 

28 tháng 1 2022

Câu 3:

<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)

Câu 4 tương tự.