Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(0< x;y;z\le1\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\)
\(\Leftrightarrow xz-x-z+1\ge0\)
\(\Leftrightarrow xz+1\ge x+z\Rightarrow1+y+xz\ge x+y+z\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\)
Hoàn toàn tương tự: \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\) ; \(\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\)
\(\Rightarrow VT\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\) (do \(x;y;z\le1\Rightarrow x+y+z\le3\))
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)
\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)
\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)
\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)
\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)
\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)
do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)
dấu = xảy ra khi x=y=z=1/3
zậy...........
Đk: $x\geq \frac{1}{2}$
Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$
$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$
$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$
$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$
Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$
$\Rightarrow $ Pt $(*)$ vô nghiệm
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V
v~~ ko thằng admin :(( t làm cái bài này mất gần 30 phút mà bây giờ nó éo hiện câu trả lời của tao ???? hận quá đi
bài này easy lắm bạn ơi :((
áp dụng BDT (Am-ag) mẫu ta có
\(\left(x^2+y^2\right)\ge2\sqrt{x^2y^2}=2xy\) rồi thay vào
suy ra \(\frac{1}{x^2+y^2+2}\le\frac{1}{2xy+2}\)
\(\left(y^2+z^2\right)\ge2yz\)
suy ra \(\frac{1}{y^2+z^2+2}\le\frac{1}{2yz+2}\)
tượng tự vs BDT con lại rồi + vế vs vế ta được
\(VT\le\frac{1}{2xy+2}+\frac{1}{2yz+2}+\frac{1}{2xz+2}=\frac{1}{xy+xy+1+1}+\frac{1}{yz+yz+1+1}+\frac{1}{xz+xz+1+1}\)
gọi cái \(\frac{1}{yz+yz+1+1}+.........=Pain\)
áp dụng cosi sáp cho 4 số ta được
\(\frac{1}{xy+xy+1+1}\le\frac{1}{16}\left(\frac{1}{xy}+\frac{1}{xy}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{yz+yz+1+1}\le\frac{1}{16}\left(\frac{1}{yz}+\frac{1}{yz}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{xz+xz+1+1}\le\frac{1}{16}\left(\frac{1}{xz}+\frac{1}{xz}+\frac{1}{1}+\frac{1}{1}\right)\)
+ vế với vế ta được
\(VT\le Pain\le\frac{1}{16}\left(\frac{2}{xz}+\frac{2}{yz}+\frac{2}{xy}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)\)
\(VT\le PAIN\le\frac{1}{8}\left(\frac{1}{xz}+\frac{1}{yz}+\frac{1}{xy}+1+1+1\right)\)
bây giờ m đi chứng minh cái \(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{xy}\ge3\) chắc là m làm được
áp dụng BDT cô si ta có
\(\frac{1}{xz}+xz\ge2\)
\(\frac{1}{yz}+yz\ge2\)
\(\frac{1}{xz}+zx\ge2\)
+ vế với vế ta được
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+xy+yz+zx\ge6\)
mà đề bài cho xy+yz+xz=3 suy ra
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3\)
nhưng mà nó trái dấu oy :(( kệ nhé cứ thay vào nhé không sao hết bạn oy :)
thay vào ta được
\(VT\le PAIN\le\frac{1}{8}\left(3+3\right)=\frac{3}{4}\)
ĐIỀU CẦN PHẢI CHỨNG MINH :((
x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.
A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)
Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3
dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3
suy ra A<1/3.3=1(đpcm)