Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)
\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)
Cộng theo vế ta có:
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)
Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)
Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)
Áp dụng BĐT AM-GM lần nữa ta có:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)
Vậy BĐT đầu đã được c/m
từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)
Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3
Ko chịu tag@@
Ta có: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\) (1)
Và \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{1}{27}\) (cô si cho 3 số)
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xyz}=\frac{1}{x^2+y^2+z^2}+\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}+\frac{1}{xyz}-\frac{1}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(\ge\frac{16}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}+\frac{1}{xyz}-\frac{1}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(\ge\frac{16}{1+\frac{1}{3}}+\frac{3}{3xyz}-\frac{x+y+z}{3xyz}\) (sử dụng (1) và quy đồng mấy cái phía sau)
\(=12+\frac{3-\left(x+y+z\right)}{3xyz}=12+\frac{2}{3xyz}\)
\(\ge12+\frac{2}{3.\frac{1}{27}}=30^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Lê Thị Thục Hiền nốt câu ni Vũ Minh Tuấn @Nk>↑@
Đầu tiên CM BDT :
\(1+x^3+y^3\ge xy"x+y+z"\)
\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"
\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)
\(\Leftrightarrow"x+y""x-y"^2\ge0\)
BDT luôn đúng theo gt
\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)
\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
Tương tự
\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)
\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)
\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
AD BDT Cauchy cho các số > 0
\(x+y+z\ge3\). \(\sqrt[3]{xyz}=3\)
\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)
\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\)
\(\Rightarrow VT\ge VP\)
\(\Rightarrow DPCM\)
Vậy Dấu \(= khi x=y=z=1\)
P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu