K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

theo mik hình như  ở vế trái phải là x^3/y^2 chứ

8 tháng 1 2017

em học lớp 9 lộn ngược nè! Dang Dang hỏi em thì hỏi cái đầu gối còn hơn

8 tháng 1 2017

\(\hept{\begin{cases}x+y+z\ge3\sqrt[z]{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\end{cases}\Rightarrow}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)đẳng thức khi x=x=z=2

\(\text{Cho:}x^2+y^2+z^2=1\text{.Chứng minh rằng:}\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{z+2y}\ge\frac{1}{3}\)

\(\text{Áp dụng BĐT Cosi cho 2 số dương, ta có:}\)

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

\(\text{Lại có:}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\text{Do đó:}\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+x^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

31 tháng 1 2022

cho minh hoi phan bat dang thuc cosi la ban dung cong thuc the nao ak