Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
áp dụng BĐT Cauchy ta có
\(\frac{x^3}{y+2z}+\frac{y+2z}{9}+\frac{1}{3}>=3\sqrt[3]{\frac{x^3}{y+2z}.\frac{\left(y+2z\right)}{9}.\frac{1}{3}}=x\)
\(=>\frac{x^3}{y+2z}>=x-\frac{y+2z}{9}-\frac{1}{3}\)
Tương tự \(\frac{y^3}{z+2x}>=y-\frac{z+2x}{9}-\frac{1}{3}\),\(\frac{z^3}{x+2y}>=z-\frac{x+2y}{9}-\frac{1}{3}\)
\(=>P>=\left(x+y+z\right)-\frac{3\left(x+y+z\right)}{9}-\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\)
Mà x+y+z=3
\(=>P>=3-1-1=1\)
=>Min P=1
Dấu "=" xảy ra khi x=y=z=1
\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT cô si:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)
\(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)
Cộng vế với vế ta được:
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)
\(B\ge2\)
Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)
Áp dụng bất đẳng thức Bunhiacopski ta có
\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)
Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)
\(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)
hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)
\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)
Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)
Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)
ÁP DỤNG BĐT AM-GM ta có
\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)
\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)
\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)
Cộng từng vế ta được
\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)
\(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)
\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
Phải là giá trị nhỏ nhất nha bạn
Áp dụng BĐT Cô-si dạng Engel
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
áp dụng bất đẳng thức cô si ta có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)