K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Ta có:

\(=\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{z^3}{6}+\dfrac{z^3}{6}\)

\(\ge11.\sqrt[11]{\dfrac{x^6}{6^6}.\dfrac{y^6}{6^3}.\dfrac{z^6}{6^2}}=11.\sqrt[11]{\dfrac{\left(xyz\right)^6}{6^{11}}}=11.\sqrt[11]{\dfrac{1}{6^{11}}}=\dfrac{11}{6}\)

Vậy GTNN là \(A=\dfrac{11}{6}\)đạt được khi \(x=y=z=1\)

PS: Bài này nhé. Bài trước nhầm 1 chỗ. Mà kệ đừng xem bài trước làm gì nhé e.

1 tháng 5 2017

Ta có:

\(=\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{x}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{y^2}{6}+\dfrac{z^3}{6}+\dfrac{z^3}{6}\)

\(\ge11.\sqrt[11]{\dfrac{x^6}{6^6}.\dfrac{y^6}{6^3}.\dfrac{z^6}{2^6}}=11.\sqrt[11]{\dfrac{\left(xyz\right)^6}{6^{11}}}=11.\dfrac{xyz}{6}=\dfrac{11}{6}\)

Vậy GTNN là \(A=\dfrac{11}{6}\)đạt được khi \(x=y=z=1\)

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(6=\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\)

\(\geq 6\sqrt[6]{\frac{1}{xy^2z^3}}\)

\(\Leftrightarrow \frac{1}{xy^2z^3}\leq 1\Leftrightarrow xy^2z^3\geq 1\)

Tiếp tục áp dụng BĐT AM-GM:

\(A=x+y^2+z^3\geq 3\sqrt[3]{xy^2z^3}\geq 3\sqrt[3]{1}=3\)

Vậy \(A_{\min}=3\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} \frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\ x=y^2=z^3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

4 tháng 8 2021

còn cách làm khác không ạ?

 

Áp dụng Bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Tự chứng minh)

\(\Rightarrow C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

NV
29 tháng 6 2020

\(C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
10 tháng 1 2021

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
29 tháng 6 2020

\(A\ge\frac{9}{2x+y+2y+z+2z+x}=\frac{9}{3\left(x+y+z\right)}=\frac{9}{3.3}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)