Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
\(\sqrt{x}+\sqrt{y}=\sqrt{z}\Rightarrow x+y+2\sqrt{xy}=z\Rightarrow x+y-z=-2\sqrt{xy}\)
\(\sqrt{x}-\sqrt{z}=\sqrt{y}\Rightarrow x+z-2\sqrt{xz}=y\Rightarrow z+x-y=2\sqrt{xz}\)
Tương tự:\(y+z-x=2\sqrt{yz}\)
\(A=\frac{1}{-2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{zx}}=\frac{1}{2}\left(\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}\right)=0\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)
Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)
\(x=\dfrac{1}{a}-1\)
Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)
Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)
Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)
Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)
\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)
Từ đây cần chứng minh:
\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)
Còn lại bạn tự làm hoặc không để tối rảnh mình làm.
Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:
Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.
Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$
Bất đẳng thức quy về:
$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right) \right) }}\geqslant 0$$
\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)
Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)
Đây là điều hiển nhiên.
Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.
Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)
Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)
Thật vậy, ta có:
\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)