K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

27 tháng 6 2018

\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)

\(\Leftrightarrow\sqrt[3]{\dfrac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\dfrac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le1\)

Áp dụng BĐT Cô-si cho 3 số dương, ta có:

\(\Leftrightarrow\sqrt[3]{\dfrac{abc}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}+\sqrt[3]{\dfrac{xyz}{\left(a+x\right)\left(b+y\right)\left(c+z\right)}}\le\dfrac{1}{3}\left(\dfrac{a}{a+x}+\dfrac{b}{b+y}+\dfrac{c}{c+z}+\dfrac{x}{a+x}+\dfrac{y}{b+y}+\dfrac{z}{c+z}\right)=1\)

\(\sqrt[3]{abc}\le\dfrac{a+b+c}{3}\)

\(\sqrt[3]{xyz}\le\dfrac{x+y+z}{3}\)

\(\Rightarrow\sqrt[3]{abc}+\sqrt[3]{xyz}\le\dfrac{\left(a+x\right)+\left(b+y\right)+\left(c+z\right)}{3}\)

Áp dụng BĐT Cô-si cho 3 số dương (a+x); (b+y); (c+z) , ta có:

\(\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\le\dfrac{\left(a+x\right)}{ }\)

10 tháng 8 2017

hi kết bạn nha

5 tháng 7 2019

Em thử nhá!Ngồi nãy giờ mới tìm được cách ghép-_-" Mà cũng ko chắc đâu..

Theo đề bài dễ thấy x;y >= z

\(BĐT\Leftrightarrow\sqrt{\frac{z}{y}.\frac{x-z}{x}}+\sqrt{\frac{z}{x}.\frac{y-z}{y}}\le1\)

Áp dụng BĐT Cauchy: \(VT\le\frac{1}{2}\left(\frac{z}{y}+\frac{x-z}{x}+\frac{z}{x}+\frac{y-z}{y}\right)=\frac{1}{2}.2=1^{\left(đpcm\right)}\)

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

2 tháng 10 2019

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả

5 tháng 7 2019

Em(mình) thử nhé, ko chắc đâu

3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)

\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc

Suy ra \(P=\frac{-abc}{abc}=-1\)

Vậy..

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)