K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

12 = (x+ y + z)= x2 + y+ z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0

1 = (x+y+z)3 = (x + y)+ z3 + 3(x+ y+z)z(x+ y) = x3 + y+ z+ 3xy(x+ y) + 3(x+ y)z

 = 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )

=> xyz = 0 

+) 0 =  (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z)  = x2y2 + y2z2 + z2x2  

=> x2y2 + y2z2 + z2x2  = 0 => xy = 0 và  yz = 0 và zx = 0  => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)

=> P = 1

 

23 tháng 6 2017

Vào câu hỏi này nè

https://olm.vn/hoi-dap/question/146868.html

Cho x+y+z=1 và x3+y3+z3=1

Tính A=x2007+y2007+z2007

30 tháng 1 2016

trong nâng cao và phát triển có

11 tháng 4 2016
giup mik vs. Cau nao cux dk
11 tháng 2 2017

câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)

câu 2: mình tạm chỉnh lại đề tý

\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)

câu 3:

\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)

\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)

\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)

Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010 

11 tháng 2 2017

câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)

thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)

\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)