Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta lại có:
\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x+y+z=1\)
Làm nốt
Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)
Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)
Biến đổi linh tinh P chắc là ra :D
+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)
Vậy....
TH1: \(xy+yz+zx=0\)
\(\Leftrightarrow z\left(x+y\right)=-xy\)
\(\Leftrightarrow x+y=\frac{-xy}{z}\)
Vì vai trò của x, y, z là như nhau nên ta cũng có :
\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)
Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)
\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)
\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)
\(P=\frac{-xyz}{xyz}=-1\)
Vậy....
Ta có:
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)
Ta lại có:
\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)
\(x+y+z=7\Rightarrow z=7-x-y\Rightarrow xy+z-6=xy+7-x-y-6=xy-x-y+1\)
\(=\left(x-1\right)\left(y-1\right)\)
Tương tự: \(yz+x-6=\left(y-1\right)\left(z-1\right);zx+y-6=\left(z-1\right)\left(x-1\right)\)
Viết lại: \(H=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x-1+y-1+z-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-\left(xy+yz+zx\right)+x+y+z-1}\)
\(=\frac{7-3}{3-13+7-1}=-1\)(Từ gt tính được \(xy+yz+zx=13\))
Ta có :
\(xy+yz+zx\)= \(\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}\)= \(\frac{7^2-23}{2}\)= \(13\)
Ta lại có :
\(xy+z-6=xy+z+1-x-y-z\)= \(\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\)\(\frac{1}{\left(x-1\right)\left(y-1\right)}\)\(+\)\(\frac{1}{\left(y-1\right)\left(z-1\right)}\)\(+\)\(\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\)\(\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}\)
\(=-1\)
Ta có: \(\left(x+y+z\right)=a\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\)
\(\Leftrightarrow\left(xy+yz+zx\right)=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}=\frac{a^2-b^2}{2}\)
Ta lại có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{c}\)
\(\Leftrightarrow xyz=c\left(xy+yz+zx\right)=c.\frac{a^2-b^2}{2}\)
Ta biến đổi: \(x^3+y^3+z^3=x^3+y^3+z^3-3xyz+3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+zx\right)\right)+3xyz\)
\(=a.\left(b^2-\frac{a^2-b^2}{2}\right)+\frac{3c\left(a^2-b^2\right)}{2}\)
\(\left\{\begin{matrix}x+y+z=a\left(1\right)\\x^2+y^2+z^2=b^2\left(2\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\left(3\right)\end{matrix}\right.\)
HĐT ta có\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+xz+yz\right)\right)-3xyz\)
từ (3)=> (xy+xz+yz)/(xyz)=1/c(*)
(1) bình phường=>2(xy+xz+yz)=(a^2-b^2 )
(*)=> xyz=(a^2-b^2).c/2
Thay hết vào biểu thức trên => đáp số
Với x2+y2+z2=1 ta có:
x+y+z=1=> (x+y+z)2=1
=> x2+y2+z2+2.(xy+yz+zx)=1
=> 1+2.(xy+yz+zx)=1
=> 2.(xy+yz+zx)=0 => xy+yz+zx=0
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc.
Áp dụng vào bài toán ta có xy+yz+zx=0 => (xy)3+(yz)3+(zx)3=3.(xyz)2
Với xyz=1 và (xy)3+(yz)3+(zx)3=3.(xyz)2 ta có\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{\left(xyz\right)^3}=\frac{3.\left(xyz\right)^2}{xyz}=\frac{3}{xyz}=3\)
=> đpcm