K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

\(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

8 tháng 9 2018

Ta có: \(y+z=-x\)

\(\left(y+z\right)^5=-x^5\)

\(y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(x^5+y^5+z^5+5yz\left(\left(y+z\right)\left(y^2-yz+z^2\right)+2yz\left(y+z\right)\right)=0\)

\(x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)-5xyz\left(\left(y^2+2yz+z^2\right)+y^2+z^2\right)=0\)

\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

18 tháng 7 2016

Bài 32: 

a) P=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

       =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

        =  \(1+\sqrt{2}\)

b) Có:  \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)

Thay x=-y  ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )

Thay x=2y ta có :   Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

13 tháng 4 2019

Theo đề: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow-\left(x+y\right)=z\)

\(\Leftrightarrow-\left(x+y\right)^5=z^5\)

\(x^2+y^2+z^2=1\)

\(\Rightarrow x^2+y^2=1-z^2\)

\(\Rightarrow\left(x+y\right)^2-2xy=1-z^2\)

\(\Rightarrow\left(x+y\right)^2=1-z^2+2xy\)

\(\Rightarrow\left(-z\right)^2=1-z^2+2xy\)

\(\Leftrightarrow xy=\frac{2z^2-1}{2}\)

Nên ta có:

\(VT=x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5\)

                                   \(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)

                                   \(=x^5+y^5-x^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4-y^5\)

                                    \(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

                                    \(=-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)

                                    \(=-5xy\left(x+y\right)\left(x^2-xy+y^2\right)-10x^2y^2\left(x+y\right)\)

                                     \(=-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)

                                     \(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

                                       \(=-5.\frac{2z^2-1}{2}.\left(-z\right).\left(1-z^2+\frac{2z^2-1}{2}\right)\)

                                       \(=\frac{5z\left(2z^2-z\right)}{4}=\frac{5}{4}z\left(2x^2-1\right)=\frac{5}{4}\left(2z^3-z\right)=VP\)

=> đpcm

14 tháng 11 2015

\(\text{Có: }x+y=5-z;\text{ }xy=\frac{2}{z}\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\left(5-z\right)^2-\frac{4}{z}\)

Suy ra: \(\left(5-z\right)^2-\frac{4}{z}+z^2=13\Leftrightarrow2z^3-10z^2+25z-17=0\)

\(\Leftrightarrow\left(z-1\right)\left(2z^2-8z+17\right)=0\Leftrightarrow z=1\)

\(\Rightarrow\int^{x+y=4}_{xy=2}\Leftrightarrow x=2+\sqrt{2};\text{ }y=2-\sqrt{2}\text{ }or\text{ }x=2-\sqrt{2};\text{ }y=2+\sqrt{2}\)

Do vai trò của x, y, z là như nhau nên hệ có nghiệm

\(\left(x;y;z\right)=\left(2+\sqrt{2};\text{ }2-\sqrt{2};1\right)\)và các hoán vị.

7 tháng 6 2019

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)