K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

\(3\left(x-5\right)^2-5=22\)

\(3\left(x-5\right)^2=22+3\)

   \(\left(x-5\right)^2=27.3\)

    \(\left(x-5\right)^2=81\)

    \(\left(x-5\right)^2=9^2\)

    \(\left(x-5\right)=9\)

    \(x=9+5\)

    \(x=14\)

Đúng nha

27 tháng 10 2015

\(3\left(x-5\right)^2-5=22\)

\(3\left(x-5\right)^2=22+5\)

\(3\left(x-5\right)^2=27\)

\(\left(x-5\right)^2=27:3\)

\(\left(x-5\right)^2=9\)

\(\left(x-5\right)^2=3^2\)

\(x-5=3\)

\(x=3+5\)

\(x=8\)

16 tháng 3 2017

\(x;y;z;t\in N\)nên ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

=> M có giá trị không phải là số tự nhiên

16 tháng 3 2017

Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)

Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2 

Vậy M không phải là số tự nhiên

30 tháng 12 2015

m=x+y+z+t/x+y+z+x+y+t+y+z+t+x+z+t=1/3

13 tháng 6 2018

biến đổi ntn nè x/x+y+z+t + x/x+y+z+t + z/y+z+t + t/x+t+z bạn lm tiếp đi dễ mà dài

13 tháng 6 2018

Có:  \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

       \(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

       \(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

       \(\frac{t}{x+t+z}>\frac{t}{x+y+z+t}\)

=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)

=> \(M>\frac{x+y+z+t}{x+y+z+t}=1\)

=> \(M>1\)(1)

Ta có:  \(\frac{a}{b}< \frac{a+m}{b+m};\forall m\inℕ^∗\)

=> \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

      \(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

      \(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

      \(\frac{t}{x+t+z}< \frac{t+y}{x+y+z+t}\)

=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)

=> \(M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

=> \(M< 2\)(2)

Từ (1) và (2) => \(1< M< 2\)

=> \(M\notin N\)

=> M không có giá trị là số tự nhiên

17 tháng 3 2017

Ta có

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)

\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)

\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)

\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)

công lại ta dc

1<M<2

vậy M k \(\in\)N

28 tháng 1 2017

\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}\)\(+\frac{t}{x+z+t}=\frac{x+y+z+t}{x+y+z+x+y+t+y+z+t+x+z+t}\)

=\(\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

vậy k k phải là số tự nhiên

11 tháng 3 2020

ta có *x/x+y+z+t<x/x+y+z<x/x+y

và *y/x+y+z+t<y/x+y+t<y/x+y

*z/x+y+z+t<z/y+z+t<z/z+t

*t/x+y+z+t<t/x+z+t<t/z+t

=> cộng các vế cho nhau, ta có:

(x/x+y+z+t)+(y/x+y+z+t)+(z/x+y+z+t)+(t/x+y+z+t)<M<(x/x+y)+(y/x+y)+(z/z+t)+(t/z+t)

hay x+y+z+t/x+y+z+t<m<(x+y/x+y)+(z+t/z+t)

=>1<M<2 => m ko có giá trị là số tự nhiên

CHÚC BẠN HỌC TỐT!!!

13 tháng 6 2015

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)

Ta chứng minh \(\frac{a}{b}<1\Rightarrow\frac{a}{b}<\frac{a+m}{b+m}\)\(m\in\)N*

(Bằng biến đổi tương đương)

\(\Rightarrow M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{x+z}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)

Do 1 < M < 2 nên M không phải số tự nhiên.

 

22 tháng 12 2016

chứng minh \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)không phải số tự nhiên

24 tháng 6 2020

Vì x, y, z, t thuộc N* nên :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)

Từ (1) (2) (3) và (4)

\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\) không phải là số tự nhiên

24 tháng 6 2020

Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm