K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Ta có:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\Rightarrow x+y+z=xyz\)

Dễ có một vài phép biến đổi cơ bản và bất đẳng thức AM - GM:\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+x^2yz}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

\(=\sqrt{\frac{x}{x+z}\cdot\frac{x}{x+y}}\le\frac{\frac{x}{x+z}+\frac{x}{x+y}}{2}\)

Khi đó:\(LHS\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{z+y}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

1 tháng 8 2017

Thay  \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)  ta có

\(1+x=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Tương tự  \(1+y=\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)  và  \(1+z=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

và  \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{z}+\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

Do đó P = 2

13 tháng 7 2019

A

Áp dụng BĐT cosi ta có 

\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)

\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)

Khi đó 

\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)

MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)

13 tháng 7 2019

B

Áp dụng BĐT cosi ta có :

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)

Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)

=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)

\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z

24 tháng 8 2019

Có xy + yz + zx = 1

=> 1 + x2 = x2 + xy + yz + zx

     1 + x2 = (x + y)(y + z)

Tương tự ta có: 

     1 + y2 = (y + x)(y + z)

     1 + z2 = (z + x)(z + y)

Thay vào P, ta được:

\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(P=xy+yz+zx+xy+yz+zx\)

\(P=2\left(xy+yz+zx\right)=2\)

Vậy P = 2

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

21 tháng 6 2019

Thay \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\) ta có:

\(\left\{{}\begin{matrix}1+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+x=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\\1+y=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{x}\right)\\1+z=\left(\sqrt{z}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\end{matrix}\right.\)

\(P=\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)

\(P=\sum\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)=2\)

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô