Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{3x}{4}\)= \(\frac{y}{2}\)= \(\frac{3z}{5}\)
=> \(\frac{1}{3}.\frac{3x}{4}=\frac{1}{3}.\frac{y}{2}=\frac{1}{3}.\frac{3z}{5}\)
\(\Rightarrow\frac{3x}{12}=\frac{y}{6}=\frac{3z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{y-z}{6-5}=15\)
Suy ra:
- x = 15.4=60
- y=15.6=90
- z=15.5=75
\(\Rightarrow\)x + y + z = 225
Cho x, y, z thỏa mãn: \(\frac{3x}{4}=\frac{y}{2}=\frac{3z}{5}\) và \(y-z=15\). Giá Trị \(x+y+z\) là:
ta có \(\frac{y}{2}\) =\(\frac{3y}{6}\) =>\(\frac{3x}{4}\) =\(\frac{3y}{6}\) =\(\frac{3z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:(mà y-z=15
\(\frac{3x}{4}\)=\(\frac{3y}{6}\) =\(\frac{3z}{5}\) =\(\frac{3y-3z}{6-5}\)=\(\frac{3\left(y-z\right)}{1}\) =3.15=45
\(\frac{3x}{4}\)=45=>x=\(\frac{45.4}{3}\) =60
\(\frac{3y}{6}\)=45=>y=\(\frac{45.6}{3}\) =90
\(\frac{3z}{5}\)=45=>z=\(\frac{45.5}{3}\) =75
vậy x+y+z=60+90+75=225
Ta có \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{x+y+3z+y+z+3x+z+x+3y}{7+8+10}\)
\(=\frac{5\left(x+y+z\right)}{25}=\frac{x+y+z}{5}=\frac{5}{x+y+z}\)(1)
Từ (1) => (x + y + z)2 = 25
=> \(\orbr{\begin{cases}x+y+z=5\\x+y+z=-5\end{cases}}\)
Khi x + y + z = 5 => \(\frac{5}{x+y+z}=1\)
=> \(\hept{\begin{cases}z+x+3y=10\\y+z+3x=8\\x+y+3z=7\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2y=10\\x+y+z+2x=8\\x+y+z+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}5+2y=10\\5+2x=8\\5+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}y=2,5\\x=1,5\\z=1\end{cases}}\)(tm)
Khi x + y + z = -5 => \(\frac{5}{x+y+z}=-1\)
=> \(\hept{\begin{cases}x+y+3z=-7\\y+z+3x=-8\\z+x+3y=-10\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2z=-7\\x+y+z+2x=-8\\x+y+z+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}-5+2z=-7\\-5+2x=-8\\-5+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}z=-1\\x=-1,5\\y=-2,5\end{cases}}\)(tm)
Vậy các cặp (x;y;z) thỏa mãn là (1,5;2,5;1) ; (-1,5;-2,5;-1)
áp dụng tính chất dãy tỉ số bằng nhau là ra ấy bạn
mình không giải ra ,bạn tự làm nhé
ta có
\(\frac{x}{3}\)=\(\frac{y}{2}\)=> \(\frac{x}{9}\)=\(\frac{y}{6}\)
\(\frac{y}{3}\)=\(\frac{z}{5}\)=>\(\frac{y}{6}\)=\(\frac{z}{10}\)
=>\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)=> \(\frac{2x}{18}\)=\(\frac{y}{6}\)=\(\frac{3z}{30}\)=\(\frac{2x-y+3z}{18-6+30}\)=\(\frac{42}{42}\)=1
Ta lại có:
\(\frac{2x}{18}\)= 1=> 2x=18=>x=9
\(\frac{y}{6}\)= 1 =>y=6
\(\frac{3z}{30}\)= 1=>3z=30=>z=10
Vậy x=9 ; y=6 và z=10
Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)
=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)
=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)
=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)
=> x = y = z = t = 403
Khi đó A = x + 2y - 3z + t
= x + 2x - 3x + x
= x = 403
Vậy x = 403
Ta có :x / 2 = 2x / 4 = 2y / 3 = 2x - 2y / 4 - 3 = 2(x - y) / 1 = 2.15 = 30
=> 3z = 30.4 = 120 => z = 120 : 3 = 40 => x - y - z = 15 - 40 = -25