Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+4y^2+9z^2=2x+4y+6z-3$
$\Leftrightarrow (x^2-2x+1)+(4y^2-4y+1)+(9z^2-6z+1)=0$
$\Leftrightarrow (x-1)^2+(2y-1)^2+(3z-1)^2=0$
Ta thấy: $(x-1)^2\geq 0; (2y-1)^2\geq 0; (3z-1)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-1)^2=(3z-1)^2=0$
$\Leftrightarrow x=1; y=\frac{1}{2}; z=\frac{1}{3}$
Khi đó:
$xyz=1.\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$
giờ
là lấy cái vế trên á
thế đi thế lại
nghĩa là
xy=-2
thì x=-2/y
thế vào
xz=3
sẽ dc
-2z/y=3
nhân y cho cái phân số dc
-2zy/y^2=3
thay zy=-4 vô
sẽ dc
y^2=8/3
thay đi thay lại là dc á
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z
=> đpcm
x2+2x+1+y2-4y+4+z2+6z+9=0
(x+1)2+(y-2)2+(z+3)2=0
(x+1)2 \(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)
mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha
từ đó tính đc x,y,z
Ta có:
\(x^2+y^2+z^2-2x+4y-6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2-2x+4y-6z+14=0\)
\(\Leftrightarrow x^2+y^2+z^2-2x+4y-6z+1+4+9=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+\left(z^2-6z+9\right)=0\)\(\Leftrightarrow\left(x^2-2x.1+1^2\right)+\left(y^2+2y.2+2^2\right)+\left(z^2-2z.3+3^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=0\)
Lại có:
\(\left(x+1\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\ge0\)
Dấu "=" chỉ xảy ra khi và chỉ khi \(x-1=y+2=z-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\\z=3\end{matrix}\right.\)
Khi đó: \(x+y+z=1-2+3=2\)