K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)

 

19 tháng 6 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)

18 tháng 1 2021

\(x+y+z=7\Rightarrow z=7-x-y\Rightarrow xy+z-6=xy+7-x-y-6=xy-x-y+1\)

\(=\left(x-1\right)\left(y-1\right)\)

Tương tự: \(yz+x-6=\left(y-1\right)\left(z-1\right);zx+y-6=\left(z-1\right)\left(x-1\right)\)

Viết lại: \(H=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\frac{x-1+y-1+z-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-\left(xy+yz+zx\right)+x+y+z-1}\)

\(=\frac{7-3}{3-13+7-1}=-1\)(Từ gt tính được \(xy+yz+zx=13\))

18 tháng 1 2021

Ta có :

\(xy+yz+zx\)\(\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}\)\(\frac{7^2-23}{2}\)\(13\)

Ta lại có :

\(xy+z-6=xy+z+1-x-y-z\)\(\left(x-1\right)\left(y-1\right)\)

\(\Rightarrow A=\)\(\frac{1}{\left(x-1\right)\left(y-1\right)}\)\(+\)\(\frac{1}{\left(y-1\right)\left(z-1\right)}\)\(+\)\(\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\)\(\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}\)

\(=-1\)

29 tháng 7 2020

Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)

\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)

Đẳng thức xảy ra khi x = y = z = 1