Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y,z là các số nguyên dương
nên áp dụng bất đẳng thức Cauchy ta có :
\(x+y\ge2\sqrt{xy}\)(1)
\(y+z\ge2\sqrt{yz}\)(2)
\(z+x\ge2\sqrt{zx}\)(3)
Nhân (1), (2) và (3) theo vế ta có :
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)
( do x,y,z là các số nguyên dương )
Đẳng thức xảy ra <=> x = y = z
=> đpcm
áp dụng BĐT AM-GM
ta có \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=> x=y=z
Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2
1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2
1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2
Vậy B= 2.2.2 = 8
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
thiếu đề bạn ơi
thiếu = 8xyz