K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

25 tháng 8 2017

batngothật vĩ đại Hung nguyen

21 tháng 5 2018

đặt x/y=a hay xy/z=a hay j đó là ra nói chung là 4 biế
n lười nháp

28 tháng 12 2017

Từ \(xyzt=1\) ta có: \(\dfrac{1}{x^3\left(yz+zt+ty\right)}=\dfrac{xyzt}{x^3\left(yz+zt+ty\right)}=\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\)

Đánh giá tương tự ta có:

\(pt\Leftrightarrow\dfrac{yzt}{x^2\left(yz+zt+ty\right)}+\dfrac{xzt}{y^2\left(xz+zt+tx\right)}+\dfrac{xyt}{z^2\left(xy+yt+tx\right)}+\dfrac{xyz}{t^2\left(xy+yz+zx\right)}\ge3\left(yzt+xzt+xyt+xyz\right)=3yzt+3xzt+3xyt+3xyz\)

Ta sẽ chứng minh:

\(\dfrac{yzt}{x^2\left(yz+zt+ty\right)}\ge3yzt\). Cộng theo vế rồi suy ra đpcm

T gần đi học r,có gì tối về giải full cho

29 tháng 12 2017

Áp dụng cauchy-schwarz:

\(VT=\sum\dfrac{\dfrac{1}{x^2}}{\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)^2}{3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)}=VF\)

21 tháng 1 2017

Áp dụng BĐT Cô - si cho 3 bộ số không âm

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)

\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)

\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)

Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

14 tháng 6 2017

\(BĐT\Leftrightarrow\dfrac{x}{y^3}+\dfrac{y}{z^3}+\dfrac{z}{x^3}\ge x+y+z\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Rightarrow abc\ge1\)

\(BĐT\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\dfrac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)

Ta có \(abc\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}bc\ge\dfrac{1}{a}\\ab\ge\dfrac{1}{c}\\ac\ge\dfrac{1}{b}\end{matrix}\right.\Rightarrow bc+ac+ab\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)

\(\Leftrightarrow\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\ge0\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

Đặt biểu thức vế trái là $A$

Áp dụng BĐT Bunhiacopxky:

\(A[x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)]\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2\)
Vì $xyzt=1$ nên:

\(x(yz+zt+ty)+y(xz+zt+xt)+z(xt+yt+xy)+t(xy+yz+xz)=\frac{1}{t}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{x}+\frac{1}{t}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Do đó:

$A. 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\geq \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)^2$

$\Rightarrow A\geq \frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{3}$

Áp dụng BĐT AM-GM: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq 4\sqrt[4]{\frac{1}{xyzt}}=4$

Vậy $A\geq \frac{4}{3}$ (đpcm)

24 tháng 2 2020

x,y,z,t có dương không mà dùng AM-GM (hay đề sai)