K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Bài 1:

x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)

=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)

=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)

Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5

=>xy(x-1)(x+1)(x2+1) chia hết cho 30

Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30

Nên x5y-xy5 chia hết cho 30

21 tháng 1 2019

Bài 2:

       x2+y2+z2=y(x+z)

<=>x2+y2+z2-yx-yz=0

<=>2x2+2y2+2z2-2yx-2yz=0

<=>(x – y)2 + (y – z)2 + x2 + z2 = 0

<=>x – y = y – z = x = z = 0

<=>x=y=z=0

19 tháng 10 2018

Xét hiệu \(\left(x^5+y^5+z^5\right)-\left(x+y+z\right)=\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)\)

Ta có: \(\hept{\begin{cases}x^5-x⋮30\\y^5-y⋮30\\z^5-z⋮30\end{cases}}\) (tự chứng minh)

=>\(\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)⋮30\)

Mặt khác \(x+y+z⋮30\)

=>\(x^5+y^5+z^5⋮30\) (đpcm)

24 tháng 8 2017

mk ko biết bởi vì mk mới hok lp 7 thui

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 6 2015

từ x+y+z=0 => x=-(x+y) 

\(x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5=x^5-x^5+y^5-y^5-5\left(x^4y+2x^3y^2+2x^2y^3+xy^4\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)(1)

\(x^2+y^2+z^2=x^2+y^2+\left[-\left(x+y\right)^2\right]=x^2+y^2+\left(x+y\right)^2=2\left(x^2+y^2+xy\right)\)(2) 

\(x^7+y^7+z^7=x^7+y^7-\left(x+y\right)^7=-7xy\left(x^5+3x^4y+5x^3y^2+5x^2y^3+3xy^4+y^5\right)\)

\(=-7xy\left(x+y\right)\left(x^2+y^2+xy\right)\)(đoạn này tách như chỗ mũ 5 sẽ ra) (3)

nhân 10 với (3) và 7 với (1)(2) sẽ ra 2 vế = nhau của điều phải chứng minh.

đây là các phương trình bậc cao, em lên gg gõ bảng Paxcan sẽ ra nha! có qui luật, sắp thi HSG đúng k? ráng học thuộc để áp dụng nha! chúc em học tốt

 

30 tháng 6 2020

\(x^3+y^3-z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Luôn đúng

27 tháng 2 2018

x^3+y^3 = 2.(z^3+t^3)

<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3

Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )

Tương tự : y^3-y , z^3-z  và t^3-t đều chia hết cho 3

=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3

Mà x^3+y^3+z^3+t^3 chia hết cho 3

=> x+y+z+t chia hết cho 3

Tk mk nha

28 tháng 2 2018

cảm ơn bạn nhé

16 tháng 9 2017

1. Rút gọn biểu thức:

(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)

= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2

= (x - y + z + y - z)2

= x2

2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1

Giải

Đặt a = 5q + 4 (q \(\in\) N), ta có:

a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.

4 tháng 7 2016

bài 1 phân tích da thức hả bạn