K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

em lp 6  a ơi

29 tháng 8 2017

2. Phân tích vế trái ta được:

\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

Phân tích vế phải ta được:

\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

\(VT=VP\) nên \(VP-VT=0.\)

\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)

\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)

\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow x=y=z\) ( đpcm )

10 tháng 8 2018

Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)

Tương tự:\(-1\le y\le1;-1\le z\le1\)

Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)

\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị

\(\Rightarrow S=2020\)

22 tháng 5 2018

Nguyên việt hiếu tự đặng tự trả lời nice  :)) 

22 tháng 5 2018

ê hiếu  t có 1 cách nhưng mà bị ngược dấu :))  có cần t làm ko :))))