K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Luôn có \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-x\right)^2\ge0\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge xy+yz+xz\ge-1\)

\(P_{min}=-1\)dấu "=" sảy ra khi (x,y,z) là hoán vị của 3 phần tử (0,0,-1)

30 tháng 5 2017

Ta có:

\(xy+yz+zx=-1\)

\(\Leftrightarrow2\left(xy+yz+zx\right)=-2\)

\(\Leftrightarrow2\left(xy+yz+zx\right)+x^2+y^2+z^2=-2+x^2+y^2+z^2\)

\(\Leftrightarrow P=x^2+y^2+z^2=\left(x+y+z\right)^2+2\ge2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-1\end{cases}}\)

Chỉ ra 1 bộ số thỏa mãn cái đấy nhé là: \(\hept{\begin{cases}x=0\\y=1\\z=-1\end{cases}}\)

13 tháng 5 2017

\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)

\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)

\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)

\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)

\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)

Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)

\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)

Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)

15 tháng 12 2019

Áp dụng AM - GM:

\(2x^2+\frac{1}{2}z^2\ge2\sqrt{2x^2.\frac{1}{2}z^2}=2xz\)

\(2y^2+\frac{1}{2}z^2\ge2\sqrt{2y^2.\frac{1}{2}z^2}=2yz\)(x,y,z dương)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

Cộng từng vế của các BĐT trên:

\(T\ge2\left(xy+yz+xz\right)=10\)

(Dấu "="\(\Leftrightarrow x=1;y=1;z=2\))

15 tháng 12 2019

Có \(3z^2\)ko ạ ?

4 tháng 7 2017

\(A=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

4 tháng 7 2017

đoạn lớn hơn hoặc bằng cụm 9/ (3+xy+yz+zx) ấy, làm sao để có, mình ko hiểu lắm

8 tháng 9 2017

Áp dụng bđt Svacsơ ta có :

\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )

\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)

\(\Rightarrow x+y+z\ge\sqrt{3}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)

4 tháng 12 2021

sai đề

NV
4 tháng 12 2021

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

9 tháng 5 2016

Mình quên yêu cầu bài 2: Tìm GTNN GTLN của x.

9 tháng 5 2016

yêu cầu bài 2 Tìm giá trị min max của x

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)