Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@ Mashiro Shiina
@Akai Haruma
@Nguyễn Thanh Hằng
@Đẹp Trai Không Bao Giờ Sai
\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)
<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)
<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)
đặt x+y+z = t
=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)
=> x=y=z
ta lại có
\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)
vì x=y=z => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
a, H = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(\Leftrightarrow\) 2H = \(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)
\(\Leftrightarrow\) 2H - H = \((2^{2011}-2^{2010}-2^{2009}-...-2^2-2)\) - \((2^{2010}-2^{2009}-2^{2008}-...-2-1)\)
\(\Leftrightarrow\) H = \(2^{2011}-2.2^{2010}+1\)
\(\Leftrightarrow\) H = \(2^{2011}-2^{2011}+1\)
\(\Leftrightarrow\) H = 1
Vậy H = 1
a)H=22010-22009-...-2-1
=>2H=2(22010-22009-...-2-1)
=>2H=22011-22010-...-22-2
=>2H-H=(22011-22010-...-22-2)-(22010-22009-...-2-1)
=>H=22011-1
Ta có :
\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)
TH1: \(x+y+z\ne0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)
TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)
\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)
Vậy P=8 hoặc P=-1
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
Lời giải:
Áp dụng TCDTSBN:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$
$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$
Khi đó:
$|x+y|=|z-1|$
$\Leftrightarrow |2x|=|x-1|$
$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$
$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)
Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$