Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức đã cho tương đương với:
\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)
\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)
\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).
Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).
Vì x+y+z=0=>x=-y-z;y=-x-z;z=-x-y
\(\Rightarrow\)\(\frac{x^2}{y^2+z^2-\left(y+z\right)^2}+\frac{y^2}{z^2+x^2-\left(x+z\right)^2}+\frac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\frac{x^2}{y^2+z^2-y^2+2yz+z^2}+\frac{y^2}{z^2+x^2-x^2+2xz+z^2}+\frac{z^2}{x^2+y^2-x^2+2xy+y^2}\)
\(=\frac{x^2}{2z^2+2yz}+\frac{y^2}{2x^2+2xz}+\frac{z^2}{2y^2+2xy}\)
Vì \(x+y+z=0\Rightarrow x=-y-z;y=-x-z;z=-x-y\)
\(\Rightarrow\frac{x^2}{y^2+z^2-\left(y+z\right)^2}+\frac{y^2}{z^2+x^2-\left(x+z\right)^2}+\frac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(\Rightarrow\frac{x^2}{y^2+z^2-y^2+2yz+z^2}+\frac{y^2}{z^2+x^2-x^2+2xz+z^2}+\frac{z^2}{x^2+y^2-x^2+2xy+y^2}\)
\(\Rightarrow\frac{x^2}{2z^2+2yx}+\frac{y^2}{2x^2+2xz}+\frac{z^2}{2y^2+2xy}\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2=z^2-2xy\)
Tương tự ta có : \(y^2+z^2=x^2-2yz\)
\(x^2+z^2=y^2-2xz\)
Thay vào biểu thức ta có :
\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)
\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)
\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)
\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)
Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !
\(x+y+z=0\) => \(x+y=-z\) => \(\left(x+y\right)^2=z^2\)
=> \(x^2+2xy+y^2=z^2\)
=> \(z^2-x^2-y^2=2xy\)
Tương tự:
\(x^2-y^2-z^2=2yz\)
\(y^2-z^2-x^2=2zx\)
Thay vào tính M ta có:
\(M=\frac{x^2}{2yz}+\frac{y^2}{2zx}+\frac{z^2}{2xy}\)
\(=\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\) (*)
Ta lại có: x + y + z = 0
=> x + y = -z => \(\left(x+y\right)^3=-z^3\)
=> \(x^3+3x^2y+3xy^2+y^3=-z^3\)
=> \(x^3+y^3+z^3=-3x^2y-3xy^2\)
=> \(x^3+y^3+z^3=-3xy\left(x+y\right)\)
=> \(x^3+y^3+z^3=-3xy\left(-z\right)\) (vì x + y = -z)
=> \(x^3+y^3+z^3=3xyz\)
Thay vào (*) ta có:
\(M=\frac{1}{2}\frac{3xyz}{xyz}=\frac{3}{2}\)
Lời giải:
Vì $x+y+z=0\Rightarrow x=-(y+z)$
$\Rightarrow x^2=(y+z)^2$
$\Rightarrow \frac{x^2}{x^2-y^2-z^2}=\frac{x^2}{(y+z)^2-y^2-z^2}=\frac{x^2}{2yz}=\frac{x^3}{2xyz}$
Hoàn toàn tương tự với các phân thức còn lại:
\(\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-z^2-x^2}+\frac{z^2}{z^2-x^2-y^2}=\frac{x^3+y^3+z^3}{2xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{2xyz}\)
\(=\frac{(-z)^3-3xy(-z)+z^3}{2xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)
Năng Cộng Nguyễn: bạn lưu ý lần sau gõ đề bằng công thức toán.