K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

\(x+y+z=0\)

\(-x=y+z\)

\(x^2=\left(y+z\right)^2\) 

\(x^2=y^2+2yz+z^2\) 

\(y^2+z^2-x^2=-2yz\)

Tương tự:

\(z^2+x^2-y^2=-2zx\)

\(x^2+y^2-z^2=-2xy\)

➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\) 

Vậy S = 0

30 tháng 8 2019

Ta có:

\(x+y+z=0\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)

Vậy S=0

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

 

 

30 tháng 7 2019

hơi dài mà lười nên mình nói cách làm nha :P

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)

tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự 

quy đồng rồi tính ra = 0 là được 

Ta có:\(x^2+4y+4=0;y^2+4z+4=0;z^2+4x+4=0\)

\(\Leftrightarrow\left(x^2+4y+4\right)+\left(y^2+4z+4\right)+\left(z^2+4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4+y^2+4y+4+z^2+4z+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2=0\)

\(\left(x+2\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)

Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y+2=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\\z=-2\end{cases}\Leftrightarrow}x=y=z=-2}\)

Vậy\(x^{10}+y^{10}+z^{10}=x^{10}+x^{10}+x^{10}\)                         

                    \(=3\cdot x^{10}=3\cdot\left(-2\right)^{10}=3\cdot1024=3072\)

NV
22 tháng 6 2019

\(\Leftrightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=...\\y=...\\z=...\end{matrix}\right.\)

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)