Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức cauchy:
\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).
đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)
Áp dụng BĐT cauchy-schwarz:
\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))
Dấu = xảy ra khi a=b=c=1 hay x=y=z=1
BĐT cần chứng minh tương đương
\(VT\ge4\left(x+y+z\right)\)
\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Theo BĐT Cauchy-Schwarz và AM-GM, ta có:
\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)
Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)
Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)
\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
@Phương An
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Lời giải:
Ta có:
\(A=\sqrt{(x+y)(y+z)(z+x)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
\(A=\frac{(y+z)\sqrt{(x+y)(x+z)}}{x}+\frac{(z+x)\sqrt{(y+z)(y+x)}}{y}+\frac{(x+y)\sqrt{(z+x)(z+y)}}{z}\)
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)\geq (x+\sqrt{yz})^2\) và tương tự với những biểu thức khác suy ra:
\(A\geq \frac{(y+z)(x+\sqrt{yz})}{x}+\frac{(z+x)(y+\sqrt{xz})}{y}+\frac{(x+y)(z+\sqrt{xy})}{z}\)
hay \(A\geq 2(x+y+z)+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}+\frac{(x+y)\sqrt{xy}}{z}\)
hay \(A\geq 2(x+y+z)+\underbrace{\frac{yz(y+z)\sqrt{yz}+xz(x+z)\sqrt{xz}+xy(x+y)\sqrt{xy}}{xyz}}_{M}\)
Đặt \((x,y,z)=(a^2,b^2,c^2)\)
Khi đó: \(M=\frac{a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(a^2+c^2)}{a^2b^2c^2}\)
Áp dụng BĐT AM-GM:
\(a^5b^3+a^3b^5\geq 2\sqrt{a^8b^8}=2a^4b^4\)
\(b^5c^3+c^5b^3\geq 2b^4c^4\)
\(c^5a^3+a^5c^3\geq 2c^4a^4\)
\(\Rightarrow a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(c^2+a^2)\geq 2(a^4b^4+b^4c^4+c^4a^4)\) (1)
(cộng các BĐT theo vế)
Tiếp tục AM-GM:
\(a^4b^4+b^4c^4\geq 2a^2b^4c^2; b^4c^4+c^4a^4\geq 2a^2b^2c^4; c^4a^4+a^4b^4\geq 2a^4b^2c^2\)
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)\) (2)
Từ\((1); (2)\Rightarrow a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(c^2+a^2)\geq 2a^2b^2c^2(a^2+b^2+c^2)\)
\(\Rightarrow M\geq 2(a^2+b^2+c^2)=2(x+y+z)\)
Do đó: \(A\geq 2(x+y+z)+M\geq 4(x+y+z)\Leftrightarrow A\geq 4\sqrt{2}\)
Vậy \(A_{\min}=4\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
Lời giải:
Ta có:
A=√(x+y)(y+z)(z+x)(√y+zx+√z+xy+√x+yz)
A=(y+z)√(x+y)(x+z)x+(z+x)√(y+z)(y+x)y+(x+y)√(z+x)(z+y)z
Áp dụng BĐT Bunhiacopxky:
(x+y)(x+z)≥(x+√yz)2 và tương tự với những biểu thức khác suy ra:
A≥(y+z)(x+√yz)x+(z+x)(y+√xz)y+(x+y)(z+√xy)z
hay A≥2(x+y+z)+(y+z)√yzx+(z+x)√zxy+(x+y)√xyz
hay A≥2(x+y+z)+yz(y+z)√yz+xz(x+z)√xz+xy(x+y)√xyxyz M
Đặt (x,y,z)=(a2,b2,c2)
Khi đó: M=a3b3(a2+b2)+b3c3(b2+c2)+c3a3(a2+c2)a2b2c2
Áp dụng BĐT AM-GM:
a5b3+a3b5≥2√a8b8=2a4b4
b5c3+c5b3≥2b4c4
c5a3+a5c3≥2c4a4
⇒a3b3(a2+b2)+b3c3(b2+c2)+c3a3(c2+a2)≥2(a4b4+b4c4+c4a4) (1)
(cộng các BĐT theo vế)
Tiếp tục AM-GM:
a4b4+b4c4≥2a2b4c2;b4c4+c4a4≥2a2b2c4;c4a4+a4b4≥2a4b2c2
⇒a4b4+b4c4+c4a4≥a2b2c2(a2+b2+c2) (2)
Từ(1);(2)⇒a3b3(a2+b2)+b3c3(b2+c2)+c3a3(c2+a2)≥2a2b2c2(a2+b2+c2)
⇒M≥2(a2+b2+c2)=2(x+y+z)
Do đó: A≥2(x+y+z)+M≥4(x+y+z)⇔A≥4√2
Vậy Amin=4√2⇔x=y=z=√23
đk của x,y,z là x,y,z\(\ge\sqrt{2014}\) nhé, xin lỗi chép sót đề
Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)
Dấu = xảy ra
=> x =y =z
=> A = (1+1)(1+1)(1+1) =8
mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)
Lời giải:
Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:
\(ab+bc+ac=1\) và cần phải CMR:
\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)
-----------------------------------------------
Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)
\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)
\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)
\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)
Tương tự:
\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)
\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)
Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)
\(=0\)
Ta có đpcm.
Thử nhé
Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)
Thay vo P ta duoc \(P=4.\sqrt{2021}\)
----------------------------------------------------------
\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)
Cauchy-Schwarz:
\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)
\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)
\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)
Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)
\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)
\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)