K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Áp dụng bđt Bunhiacopxki ta có :

\(A=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{\sqrt{x}}+\sqrt{y}.\dfrac{2}{\sqrt{y}}+\sqrt{z}.\dfrac{3}{\sqrt{z}}\right)^2\)

\(\left(1+2+3\right)^2=36\)

18 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(A\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=36\)

Đẳng thức xảy ra khi \(x=\dfrac{1}{6};y=\dfrac{1}{3};z=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Lời giải:

Do \(x+y+z=1\) nên biến đổi như sau:

\(P=\frac{x}{(x+y)+(x+z)}+\frac{y}{(y+z)+(y+x)}+\frac{z}{(z+x)+(z+y)}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\Rightarrow \frac{x}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow P\leq \frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{x+z}\right)=\frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

6 tháng 3 2017

\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

Thay \(x+y+z=1\) vào biểu thức

\(\Rightarrow P=\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\\\dfrac{y}{x+2y+z}=\dfrac{y}{x+y+y+z}\le\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\\\dfrac{z}{x+y+2z}=\dfrac{z}{x+z+y+z}\le\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)+\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)+\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x+y}{4\left(x+y\right)}+\dfrac{x+z}{4\left(x+z\right)}+\dfrac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow P\le\dfrac{3}{4}\)

Vậy \(P_{max}=\dfrac{3}{4}\)

Dấu '' = '' xảy ra khi \(x=y=z\)

9 tháng 12 2017

\(l=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}=\dfrac{1^2}{x}+\dfrac{2^2}{y}+\dfrac{3^2}{z}\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=\dfrac{36}{1}=36\)

11 tháng 12 2017

Cho mình hỏi dấu bằng khi nào :V

24 tháng 4 2017

ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)

đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)

ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)

Áp dụng bất đẳng thức cauchy:

\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)

tương tự với các phân thức còn lại ta có:

\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

hay \(x=y=z=\sqrt{3}\)

24 tháng 4 2017

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành

Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)

Ta có:

\(a^2+b^2+c^2=1\)

\(\Rightarrow a^2+b^2=1-c^2\)

\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)

Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)

\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)

\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)

\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)

14 tháng 4 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{x}+\frac{9}{y}+\frac{16}{z}\ge\frac{\left(1+3+4\right)^2}{x+y+z}=64\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\frac{1}{x}=\frac{3}{y}=\frac{4}{z}\\x+y+z=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{8}\\y=\frac{3}{8}\\z=\frac{1}{2}\end{matrix}\right.\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27