K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

\(\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{\left(x+y\right)z}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{4}{\frac{4^2}{4}}=1\)

\(\Rightarrow x+y\ge xyz\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=1;z=2\)

25 tháng 2 2017

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

NV
8 tháng 5 2019

\(x^3+1+1\ge3\sqrt[3]{x^3}=3x\); \(y^3+1+1\ge3y\); \(z^3+1+1\ge3z\)

\(\Rightarrow x^3+y^3+z^3+6\ge3\left(x+y+z\right)\ge x+y+z+2.3\sqrt[3]{xyz}=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Dấu "=" xảy ra khi \(x=y=z=1\)

1 tháng 5 2019

Bạn làm gì vậy? Mình học lớp 8 mà

22 tháng 11 2019

Câu hỏi của FF_ - Toán lớp 8 - Học toán với OnlineMath

15 tháng 4 2020

Ta có

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)

\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)

\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)

\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)

đặt 

\(\frac{1}{xy+yz+zx}=t\)

\(=>A\ge3t^2-2t\)

mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)

\(=>A\ge-\frac{1}{3}\)(dpcm)

Dấu = xảy ra khi x=y=z=1

15 tháng 4 2020

tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai 

la 18 tuoi . hoi me bao nhieu tuoi ?

20 tháng 10 2020

Sai đề. Phản ví dụ : z=y=-1, x =6

Nếu đề bài cho x, y, z cùng dương, ta làm như sau:

x+y >= 2 căn (xy)

\(\Rightarrow x+y \geq xyz \,\, nếu \\ 2 \geq z. \sqrt{xy}\)

Dùng bất đẳng thức cosi: x + y+ z/2 +z/2 >= ....

20 tháng 10 2020

Sr tại mk ghi sai đề :))

28 tháng 9 2017

lão tôn chịu !!!!!!!.....?good bye